Do this first

Please logon here

learning catalytics.com

- Click on "create student account" → "I have a signup code" and provide your information – you can use a dummy email address etc.
- For signup code use:

ZQA9M4P

 Once you are on the next page, use this session number:

Active Learning and Hardware Projects in (Microwave) Engineering Education

B. Pejcinovic & R.L. Campbell
Electrical and Computer Engineering
Portland State University
FER 23.10.2013

Before we begin

 "Learning results from what the student does and thinks and only from what the student does and thinks" - Herbert Simon (Nobel laureate in economics, etc)

Word of caution ...

- Based on experience within US higher education system, but many conclusions are relevant for European and other contexts
- Not a review, but this work was influenced by many previous contributions: C. Furse, W. Heyward, D. Rutledge, K.C. Gupta, R.H. Caverly, Z. Popovic, and many others ...
- A word about my own experience ...

Organization

- Background and motivation
- Projects: why and how
- Lectures vs. active learning
- Implementation
- Results (work in progress)
- Suggestions and conclusions
- What can we do?

What's up?

- Why can't we do what we've always done?
- We are no longer in the business of information transfer
- Plenty of research we can radically improve our students' learning
- Many effective pedagogical approaches have been proposed and tested, but adoption of these methods in engineering is sporadic
- Engineering is very well suited for many techniques involving problem-solving and project-based learning

Opportunities and challenges

Research Based Instructional Strategies (RBIS)

- Active Learning
- Case-Based Teaching
- Collaborative Learning
- Concept Tests
- Cooperative Learning
- Inquiry Learning
- Just-In-Time Teaching
- Peer Instruction
- Problem-Based Learning
- Service Learning ...
- (Q for audience)

 "... engineering faculty members indicate that time to apply these approaches is the largest barrier to use."

What's up with MOOCs?

- Massive Open Online Courses an online course aimed at large-scale interactive participation and open access via the web. In addition to traditional course materials such as videos, readings, and problem sets, MOOCs provide interactive user forums that help build a community for the students, professors, and TAs. MOOCs are a recent development in distance education. (Wikipedia)
- What's all the hype about?
- More important: higher education system is scrutinized and serious alternatives, including MOOCs, are being developed at amazing speed
- "Higher education must innovate in order to remain viable" (Moody's)

How do we capitalize?

- Put student learning at the center
- Learn about instructional state-of-the-art
- Decide which instructional strategy is most appropriate for a given circumstances
- Give up lecturing as we know it (search for Eric Mazur's "Confessions of a converted lecturer")
- Implement assessment demonstrate success
- Take advantage of technology especially for hands-on and design

MW class projects

- Q for audience what's your project? (LC)
- Least controversial everyone (?) thinks that students should practice what they learned by implementing it in a more comprehensive, challenging way
- **Pros**: "real world", comprehensive, motivating, teamwork...
- Cons: can be difficult to implement well, require additional resources and time, teamwork, etc.
- Providing feedback and scaffolding is critical → more time
- Get to hardware ASAP perhaps even before full theoretical understanding is developed
- Do not penalize students for failure!

Hardware projects - Style 1

- o R.L. Campbell, PSU, Instrumentation course, 2013
- Choose an instrumentation problem that complements current departmental research
- o start with a basic need, make a few assumptions and initial measurements, and then draw up a set of specifications → provides a sense of authenticity
- Deploy it as part of a system
- Iterate: design build test

Hardware projects - Style 2

- R. Caverly, Villanova, RF Circuit Design course
- Uses "sticky-tape" technology for quick turn-around
- Design from components to systems
- Design-build-test
- o (Ref. [9] in paper)

Hardware projects - Style 3

- C. Furse et al. (Utah, 2004) & B.
 Pejcinovic (PSU, 2013)
- FSK receiver
- Component and system design-testbuild
- Entire system is student-designed and student built using EPL facility

Where & how is this happening?

- Labs can be an issue (cost, space, staffing)
- We have the luxury of state of the art EMAG lab with 4 TDR scopes and 4 20 GHz VNA-s + other equipment
- BIG addition Electronics prototyping lab:
 - Volunteer run, open to all students
 - Walk in with gerber files and walk out with a packaged circuit
 - http://psu-epl.github.io/

Labs at PSU

EPL:

- PCB router
- laser cutter,
- reflow oven,
- 3D printer
- Etc.

EMAG:

- 4x 20 GHz VNA
- 4x 20 GHz TDR
- 6x MW Spectrum analyzers
- 2x LCR meters (SMD)
- Optics
- Etc.

What about cost?

- Not all of this equipment is required to set up a "design-build-test" cycle – there are cheap(er) options:
 - Reduce no. of instruments; buy cheaper versions of instruments; work with sticky-tape; work at lower frequencies and scale up; build your own instruments, use PCB foundries, ...
- Set up a volunteer run, "open-access" hardware lab (some seed funding is needed)
- Have students in class help "manage" this lab

Active learning in classroom

- What's wrong with lecturing?
- Let's examine how we got here ...
- And look at one implementation example

Classroom instruction: 1910

http://www.takepart.com/photos/classroom

One example

- Two-quarters (10+10 weeks) of Microwave Circuit Design
- Course objectives:
 - Design, build and test passive circuits (microstrip and SMD)
 - Design, build and test active circuits (low-noise amplifier, mixer, power amplifier)
 - Design circuits using simulation tools
 - Measure real circuits at microwave frequencies and apply de-embedding and calibration
 - Write good quality reports
 - Read, comprehend and explain technical literature

Redesign

- Emphasis on:
 - Doing should replace listening during face-to-face classroom time
 - Students should produce something tangible
 - Students should be engaged in their learning
 - Make immediate feedback a priority
 - Provide multiple ways to retrieve recently learned concepts
 - Push students into using higher cognitive functions, but
 - Provide appropriate scaffolding
 - Have multiple opportunities for design cycle: design → build → test → redesign
- Expectations: attendance & participation, 3 hour weekly "labs", weekly activity reports, HW, project reports
- Effort: (guess) 15-17 hours a week

Q for audience

- What are one or two misconceptions that you have observed in your students?
- Couple more examples from LC

Learning Catalytics for in-class activities

Indicate the change of impedance of an open-circuit transmission line on the (z) Smith char as its electrical length increases from $l/\lambda=0$ to $l/\lambda=0.125$.

- "clickers" are very sophisticated classroom interaction systems
- All students participate
- Immediate feedback to you and students
- Adjustments
- Wide variety of questions and tasks

I am confident that I can: design microwave circuits, build and test microwave circuits, write good quality reports, read and understand technical publications

I am confident that I can: design microwave circuits, build and test microwave circuits, write good quality reports, read and understand technical publications

Effectiveness of various instructional techniques

Effectiveness of various instructional techniques

A few suggestions

- Design your course with meaningful objectives
- Incorporate projects and give students freedom to explore
- Move to active learning for face-to-face time
- Make labs interactive
- Provide immediate feedback
- Watch Eric Mazur's talk
- Visit Richard Felder's web site (NC State)
 www.ncsu.edu/effective_teaching and check his
 mand check his
 <a href="https://www.ncsu.

Conclusions

- Introduction of active learning into lectures, redesign of labs and addition of projects has been very successful.
- This is only a (small) example of what can be accomplished, but many of the techniques used can be transferred to other courses and institutions
- In our program we will continue with even more ambitions reforms, such as introduction of project-based learning and introduction of flipped-classroom instruction.

Conclusions

- Many good, research-based solutions exist >
 move to implementation
- This process of experimentation, continuous improvement and implementation of research-based instructional strategies is essential for continued relevance of collegebased (microwave) engineering education.

What else can be done?

- Providing support for "early adopters" is important
- "Community of practice" what is it and why?
- Run a series of small(er) workshops discussing research-based principles of course design
- Discuss literature on education research
- Exchange of experiences and practical ideas