
ROPGuard: Runtime Prevention of

Return-Oriented Programming Attacks

Ivan Fratrić
University of Zagreb

Faculty of Electrical Engineering and Computing

Zagreb, 24.09.2012

2

Overview

 Introduction

 What is a memory corruption vulnerability?

 Buffer overflow example

 Introduction to return-oriented programming (ROP)

 Related work

 ROPGuard

 Main ideas

 Selected Implementation details

 Evaluation

 Conclusion and ideas for future work

3

Introduction

 Memory corruption vulnerability
 contents of a memory location are unintentionally modified due to programming

errors

 In many cases memory corruption vulnerabilities can lead to arbitrary code
execution

4

5

Example: Buffer overflow on stack

Local variables

Frame pointer

Return address

Function arguments

Local variables

Frame pointer

Return address

Stack

growth

...

6

Example: Buffer overflow on stack

char buffer[20]

Frame pointer

Return address

Function arguments

Local variables

Frame pointer

Return address

Stack

growth

...

frame of

main()

frame of

another

function

7

Example: Buffer overflow on stack

char buffer[20]

Frame pointer

Return address

Function arguments

Local variables

Frame pointer

Return address

Stack

growth

...

When main() returns,

the attacker gains

control over control

flow (EIP)

frame of

main()

frame of

another

function

8

Example: Buffer overflow on stack

9

10

Memory corruption vulnerabilities

 Many additional details about stack buffer overflows
 Stack cookies, SEH overwrite, SafeSEH, SEHOP

 Many other memory corruption vulnerabilities
 Heap overflow

 Integer overflow

 Use-after-free

 Double free

 Format string vulnerabilities

 Inproper bound checks

 Inproper loop conditions

 Etc.

 In common: Attacker gains control of EIP and can execute
arbitrary code

11

Data Execution Prevention (DEP)

 Hardware protection against exploitation

 A special flag (NX bit) indicates executable memory

regions

 Executable modules loaded in memory (.exe, .dll, etc.) are

executable

 Stack and heap are NOT executable

 Can be made executable by calling special function i.e.

VirtualProtect()

 Introduced on Linux in kernel 2.6.8, on Windows in

Windows XP Service Pack 2

12

Return-oriented programming

 Generalization of return-to-libc and similar

attacks

 Use small pieces of existing executable code to

perform (complex) actions specified by the

attacker

 “small pieces of existing executable code” are called

gadgets

13

14

Return-oriented programming

 Gadget consists of two parts:

 Instruction(s) that perform something
useful

 A part that transfers the code execution
to the next gadget

 RETN instruction

 Can be used to transfer execution to
the next gadget if the attacker controls
the stack

15

Return-oriented programming

 Simple example:

 Attacker wants to write value
0x00001337 to address 0x12345678

 Break it into simple operations so that
we can find appropriate gadgets in
executable modules

 Load 0x1337 into EAX

 Load 0x12345678 into ECX

 Do MOV [ECX],EAX

16

Return-oriented programming

 Simple example (cont.)
 Attacker wants to write value 0x00001337 to address

0x12345678

 See if we have appropriate gadgets in executable
code

 msvcr71.dll:

7C3503C8 8901 MOV DWORD PTR DS:[ECX],EAX

7C3503CA C3 RETN

7C3410C3 59 POP ECX

7C3410C4 C3 RETN

7C344CC1 58 POP EAX

7C344CC2 C3 RETN

17

Return-oriented programming

 Simple example (cont.)
 Attacker wants to write value 0x1337 to address 0x12345678

 Putting it all together

0x7C344CC1

0x00001337

0x7C3410C3

0x12345678

7C3503C8 MOV [ECX],EAX

7C3503CA RETN

7C3410C3 POP ECX

7C3410C4 RETN

7C344CC1 POP EAX

7C344CC2 RETN

0x7C3503C8

???????? RETN
EIP

ESP

EAX: ????????

ECX: ????????

0x????????

EAX: 00001337

ECX: ????????

EAX: 00001337

ECX: 12345678

18

Return-oriented programming

 Real-world example

19

Return-oriented programming

 Unintended instruction sequences
 Example:

 Other instructions can be used to connect gadgets
instead of RETN:
 Indirect jumps (jump-oriented programming, JOP)

 JMP EAX

 JMP [EAX]

 JMP [EAX + offset]

 Indirect calls

7C346C09 0F58C3 ADDPS XMM0,XMM3

7C346C0A 58 POP EAX

7C346C0B C3 RETN

20

The unexpected twist

ROP is Turing-complete

(Shacham, 2007)

No! That's

not true!

That's

impossible!

21

Mitigations (related work)

 Address Space Layout Randomization (ASLR)
 Randomizes base address of

 Executable modules

 Stack

 Heap

 etc.

 Can be bypassed by
 Using/loading a module that does not support ASLR

 Using a secondary vulnerability to perform memory
disclosure

 Using the same memory corruption vulnerability to perform
both memory disclosure and code execution
 Example: Memory disclosure technique for Internet Explorer

http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-
for.html

http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html

22

Mitigations (related work)

 Solutions based on dynammic binray instrumentation

 ROPdefender (Davi et al., 2011)
 “Shadow stack” approach

 CALL-RETN relations (ROP: RETN without appropriate
CALL)

 On each CALL, the return address is placed on a shadow
stack along with the “real” stack

 On each RETN, we check if the address on top of the stack
is the same as the address on top of the shadow stack

 Drawbacks
 Dynamic instrumentation introduces overhead of 2x

 Protects only against RETN-based gadgets

23

Mitigations (related work)

 Compiler-level approaches

 G-Free (Onarlioglu et al., 2009)

 Removes all unintended gadgets

 “Encrypts” return addresses in function prologue and

“decrypts” before the function ends

 Adds stack cookie to all functions with indirect jumps/calls.

The cookie is checked before the jump/call is made

 Comprehensive solution, but:

 Requires knowing the source code

 Needs to be applied to all modules in order to be effective

24

Mitigations (related work)

 Static binary rewriting

 In-Place Code Randomization (Pappas et al.,
2012)

 Changes the order of instructions

 Replaces instructions with ecquivalent ones

 Drawbacks

 Relies on automated disassembly

 Not an exact science!

 Code vs. data

 Indirect call/jump targets

25

ROPGuard: main idea

 Requirements:

 Prototype must be fully functioning and work on Windows

 Prototype must have low overhead meaning CPU and
memory cost of no more than 5%

 Prototype must not have any application compatibility or
usability regressions

 Can we avoid instrumentation/recompiling/rewriting
by using the information already present in the process?

 Design practical runtime checks that can be applied at
runtime

 When to perform the checks?

26

ROPGuard: main idea

 In order to leverage the attack, the attacker will

need to call some functions (critical functions) to

escape the constraints of ROP or current

process

 VirtualProtect, VirtualAlloc, LoadLibrary – make

memory executable

 CreateProcess

 OpenFile, WriteFile

 Etc.

27

ROPGuard: main idea

 Perform runtime checks when any critical function gets

called

 Attempt to answer questions

 How did the critical function get called?

 What will happen after the critical function executes?

 Is the current state of the system consistent with the normal

program execution or with the exploitattempt?

 Will executing the critical function violate the system’s

security?

 ROPGuard defines 6 runtime checks

28

ROPGuard: runtime checks(1)

 Check the stack pointer

 Assume: Attacker controls EIP and EAX, but not the

stack

 Stack pivoting

 Thread information block contains information about

the area of the memory that was designated for the

stack when the thread was created

29

ROPGuard: runtime checks(2)

 Look for the address of critical function above the top

of the stack

 Why?

 RETN:

EIP <- ESP

ESP <- ESP+4

 If we entered critical function via RETN, the address of

critical function must be just above the top of the stack

 ROPGuard “saves” a part of the stack upon entering

the critical function for examination

30

ROPGuard: runtime checks(3)

 Return address check

 For each critical function, verify that

 The return address is executable

 The instruction at the return address must be

preceded with a CALL instruction

 CALL instruction must lead back to the current

critical function

31

ROPGuard: runtime checks(4)

 Check the call stack

 Call stack must be valid

 How do we obtain call

stack?

 Before RETN

 Return address just below

the frame pointer!

Function arguments

Local variables

Frame pointer

Return address

Function arguments

Local variables

Frame pointer

Return address

Local variables

Frame pointer

Return address

EBP

mov esp,ebp;

pop ebp;

32

ROPGuard: runtime checks(4)

 Checking the call stack using frame pointers

frame_ptr = EBP;

for a specified number of frames

 check if frame_ptr points to the stack;

 return address <- [frame_ptr + 4];

 check if return address is executable;

 check if return address is preceded by call;

 frame_ptr = [frame_ptr];

33

ROPGuard: runtime checks(4)

 Checking the call stack using frame pointers

 Drawbacks

 Compilers are not required to use frame pointers!

 Sometimes a compiler will opt to omit frame pointer

in favor of using EBP as an additional general-

purpose register

 Frame pointers are generally not used for very short

functions

 Can be regulated by a compiler switch

34

ROPGuard: runtime checks(5)

 Can we walk the call stack without relying on frame
pointers?

 Can we determine the size of the stack frame by relying
only on the machine code?

 7C914EEE MOV AX,WORD PTR DS:[ESI]

7C914EF1 ADD ESP,0C

7C914EF4 CMP AX,WORD PTR DS:[ESI+2]

7C914EF8 JNB SHORT ntdll.7C914F01

7C914EFA SHR EDI,1

7C914EFC AND WORD PTR DS:[EBX+EDI*2],0

7C914F01 POP EBX

7C914F02 XOR EAX,EAX

7C914F04 POP EDI

7C914F05 POP ESI

7C914F07 RETN

EIP ->

ESP = ESP + 12 ->

ESP = ESP + 4 ->

ESP = ESP + 4 ->

ESP = ESP + 4 ->

RETURN ADDRESS = [ESP] ->

35

ROPGuard: runtime checks(5)

 ROPGuard simulates control flow from return
address of the critical function to the next return
instruction and keeps track of ESP along the
way

 Repeat from the return address

 Potential problems

 Stack frame determined dynamically

 Very rare in practice

 stdcall calling convention in combination with

 Indirect calls: CALL EAX; CALL [EAX] etc.

36

ROPGuard: runtime checks(5)

 ROPGuard brakes simulation when it reaches an instruction for
which it cannot resolve ESP

 Possible extension: simulate entire instruction set

 For the time being:

37

ROPGuard: runtime checks(6)

 Function-specific checks

 Do not allow program to make stack executable

 Do not allow program to load .dll-s from the

network

38

ROPGuard: Implementation details

 ROPGuard is implemented as a command line tool and a .dll

 Process is started in a suspended state

 dll injection via CreateRemoteThread()

 When the dll is loaded
 Hooks all critical function to perform appropriate checks using inline

hooking

 Function header is replaced with a direct jump to

39

ROPGuard: Implementation details

 Whenever a process creates another (child)
process, dll is injected into this process as well

 Cache information about executable module
(avoids repeated calls to VirtualQuery)

 ROPGuard can be used to protect processes
that are already running

 Extensive configuration options

 Define what checks to perform

 Define critical functions

40

ROPGuard: Evaluation

 Experiments on an example vulnerable application

41

ROPGuard: Evaluation

 A series of benchmarks was performed to

determine the computing overhead

 0 false positives while running the benchmarks

with the default configuration.

42

ROPGuard: Evaluation

 ROPGuard .dll is just 48kB in size.

 Additional memory overhead introduced by

copy-on-write memory page protection

43

ROPGuard: Evaluation

 ROPGuard won the second prize in Microsoft’s
BlueHat Prize contest at Black Hat USA 2012

44

ROPGuard: Evaluation

 ROPGuard has been integrated with Microsoft’s EMET tool
 Enhanced Mitigation Experience Toolkit

45

Conclusion

 Preventing ROP is a difficult problem

 Still largely unsolved!

 ROPGuard

 Can detect currently used ROP attacks

 Raises the bar for the attacker, more costly exploit
development

 Easy to deploy to protect existing programs

 Low CPU and memory overhead

 Source code and documentation available at

 http://code.google.com/p/ropguard/

http://code.google.com/p/ropguard/

46

Ideas for future contests

 Contest evaluation criteria
 40.00% - Impact (Strongly mitigate modern threats?)

 30.00% - Robustness (Easy to bypass?)

 30.00% - Practical and Functional

 Find ways to improve the reliability of binary rewriting
 Modify binary without breaking basic blocks

 Removal of unintended gadgets

 Binary modification relying on unintended instruction sequences

 Code randomization
 Resolve code-vs-data and basic blocks dilemma by running the

original binary

 On the first run, the code is modified, later only the modified code is
run

47

Other contest finalists

 KBouncer (V. Pappas, 2012)

 Recent Intel CPUs support Last Branch Recording

(LBR)

 Stores the last branches in a set of 16 model specific

registers (MSRs), can be read using rdmsr instruction

 Recordv only return instructions

 On every system call check if call instruction precedes the

return address

48

Other contest finalists

 /ROP (J. DeMott, 2012)

 Compiler-level solution

 Makes a list of valid return addresses

 Requires interrupt on each return instruction

 Check if the return address is in the whitelist

49

ROPGuard: runtime checks(5)

EIP = return address of critical function;

for a specified number of instructions

 decode instruction at [EIP];

 update EIP;

 if current instruction changes ESP

 update ESP;

 else if current instruction is RETN

 check if return address is executable;

 check if return address is preceded by call;

 else if current instruction changes ESP in an
unresolvable way

 break sumulation;

