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Assumptions

A cluster of price-responsive consumers is considered

This cluster is expected to consume more at a 
favorable price

We describe the pool of price-responsive consumers
as a utility maximizer agent

Step-wise marginal utility function
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Consumers’ price-response model

maximize
xb,t ,∀b,t

B∑
b=1

xb,t (ub,t − pt )

subject to P t ≤
B∑

b=1

xb,t ≤ P t , ∀t (λt , λt )

0 ≤ xb,t ≤ Eb, ∀t (φb,t , φb,t )

It is a linear optimization problem (LOP).

Unknown variables:

• Marginal utilities ub,t

• Power bounds P t ,P t

We seek values of ub,t , P t , and P t based
on observations of x ′b,t and pt , given Eb.
We use the estimated utility maximizer
problem to predict xt+1.
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The estimation problem: Optimality condition

minimize
Ω

T∑
t=1

εt

subject to P tλt − P tλt +
B∑

b=1

Ebφb,t − εt =
B∑

b=1

xb,t (ub,t − pt )

φb,t − φb,t + λt − λt = ub,t − pt

φb,t , φb,t , λt , λt , εt ≥ 0

Ω =
{
εt ,P t ,P t ,ub,t , λt , λt , φb,t , φb,t

}
Inverse optimization (IOP) is
used to determine the
parameters of the model to
make predictions of the load.
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Leveraging auxiliary information
Model parameters P t , P t and ub,t , might vary over time. We assume a
number of time varying regressors Z such that

P t = µ+
R∑

r=1

αr Zr ,t (1)

P t = µ+
R∑

r=1

αr Zr ,t (2)

ub,t = µu
b +

R∑
r=1

αu
r Zr ,t (3)

Regressors relate to time and weather:
• Temperature of the air outside
• Solar irradiance
• Hour indicator
• Past price and load
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Leveraging auxiliary information

The bid must make sense for any plausible value of the features, in particular,

• The minimum consumption limit must be lower than or equal to the
maximum consumption limit

• The minimum consumption limit must be non-negative
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Leveraging auxiliary information
For example,

P t = P +
∑
r∈R

αr Zr ,t ≤ P +
∑
r∈R

αr Zr ,t = P t , t ∈ T , for all Zr ,t

Assume that Zr ,t ∈ [Z r ,Z r ], then

P − P + Maximize
Z ′

r,t

s.t. Z r≤Z ′
r,t≤Z r , r∈R

{∑
r∈R

(αr − αr )Z ′r ,t

}
≤ 0, t ∈ T .

which is equivalent to

P − P +
∑
r∈R

(φr ,tZ r − φr ,tZ r ) ≤ 0 t ∈ T

φr ,t − φr ,t = αr − αr r ∈ R, t ∈ T

φr ,t , φr ,t ≥ 0 r ∈ R, t ∈ T .
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Solving the estimation problem

• The estimation problem is non-linear and non-convex.

• We statistically approximate its solution by solving two linear
programming problems instead.

1 A feasibility problem (estimation of power bounds).

2 An optimality problem (estimation of marginal utilities).

• A two-step data driven estimation procedure to achieve optimality
and feasibility of x ′ in a statistical sense.
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Feasibility problem: Estimation of power bounds

�𝑃𝑃𝑡𝑡, �𝑃𝑃𝑡𝑡, 𝜇̂𝜇, �𝜇𝜇, �𝛼𝛼𝑟𝑟, �𝛼𝛼𝑟𝑟

𝑃𝑃

𝑃𝑃

𝑥𝑥𝑥
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Optimality problem: Estimating marginal utilities

𝑃

𝑃

𝑥′ 𝑜𝑝𝑡𝑖𝑚𝑎𝑙?

ො𝑢𝑏,𝑡, Ƹ𝜇𝑏
𝑢, ො𝛼𝑟

𝑢
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Solving the estimation problem
In the bound estimation problem, the penalty parameter K is statistically
tuned through validation:

𝑥, 𝑝, 𝑍 data set

Training set  Used for parametter fitting
for each posible value of K 

Validation set  Used to tune parameter K 

Test set  Used to assess forecasting
performance

We choose K so that the out-of-simple 
prediction error is minimized

K as indicator of the price-responsiveness of the load:
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Case study 1: One-hour ahead prediction
We simulate the price response behavior of a pool of
100 buildings equipped with heat pumps (assuming
economic MPC is in place).

Two classes of buildings are considered, depending
on the comfort bands of the indoor temperature.
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Case study 1: One-hour ahead prediction
We conduct a benchmark of the methodology against simple persistence
forecasting and autoregressive moving average with exogenous inputs.

• Simple persistence model: The forecast load at time t is set to be equal
to the observed load at t − 1.

• ARMAX: The aggregate load x is a linear combination of the past values
of the load, past errors and regressors.

xt = µ+ εt +
P∑

p=1

ϕpxt−p +
R∑

r=1

γr Zt−r +
Q∑

q=1

θqεt−q

Forecasting performance is evaluated according to MAE and

NRMSE =
1

xmax − xmin

√√√√√ 1
T

T∑
t=1

 B∑
b=1

x̂b,t − x ′t

2

MASE =

∑T
t=1

∣∣∣∑B
b=1 x̂b,t − x ′t

∣∣∣
T

T−1
∑T

t=2

∣∣∣x ′t − x ′t−1

∣∣∣
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Case study 1: One-hour ahead prediction
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Case study 2: One-day (24-h) ahead prediction

• Data of price-responsive households from Olympic Peninsula project
from May 2006 to March 2007

• Decisions made by the home-automation system based on occupancy
modes, comfort settings, and price

• The price was sent out every 15 minutes to 27 households
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Case study 2: One-day (24-h) ahead prediction
• Load, price, temperature and dew point during December
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Benchmark models

ARX: Auto-Regressive model with eXogenous inputs [Dorini et al., 2013, Corradi
et al., 2013]

xt = ϑx X t−n + ϑzZ t + εt ,

with εt ∼ N(0,σ2) and σ2 is the variance.

Z t : outside temperature, solar irradiance, wind speed, humidity, dew point (up to
36 hours in the past), plus binary indicators for the hour of the day and the day
of the week.

Simple Inv: Only the marginal utilities are estimated (12 blocks) as in Step 2, the rest of bid
parameters to historical maximum/minimum values observed in the last seven
days. Inspired from Keshavarz et al. [2011], Chan et al. [2014].

Inv Few: Our inverse optimization scheme only with the outside temperature and hourly
indicator variables as features.

Inv All: The same as Inv Few, but including all features.

June 19th , 2018 17 / 26



Forecasting The Estimation Problem Solution Method Solution Method Case Studies Conclusions Future Work References

Case study 2: One-day (24-h) ahead prediction
Prediction capabilities of different benchmarked methods
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Case study 2: One-day (24-h) ahead prediction

Estimated marginal utility for the pool of price-responsive consumers
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Case study 2: One-day (24-h) ahead prediction

September March
MAE RMSE MAPE MAE RMSE MAPE

ARX 7.6499 9.8293 0.2358 17.4397 23.3958 0.2602
Simple Inv 14.2631 17.8 0.4945 44.6872 54.6165 0.8365

Inv Few 5.5031 7.9884 0.1464 13.573 17.9454 0.2103
Inv All 5.8158 8.4941 0.1511 14.7977 19.1195 0.2391

The prediction performance of the proposed machinery is only slightly lower than that
of the state-of-the-art prediction tool developed in Hosking et al. [2013] on the same
dataset. However, our methodology produces a market bid!

June 19th , 2018 20 / 26



Forecasting The Estimation Problem Solution Method Solution Method Case Studies Conclusions Future Work References

Alternative application: Market bidding

Day-ahead
 market

Balancing
 market

Energy

Price
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Alternative application: Market bidding
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Simple bid

BID = {ub,t ,∀t ,∀b; Eb,∀b; P t ,P t ,∀t}

Maximize
xb,t ,∀b,t

B∑
b=1

xb,t (ub,t − pt )

subject to P t ≤
B∑

b=1

xb,t ≤ P t , ∀t

0 ≤ xb,t ≤ Eb, ∀t
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Complex bid

BID = {ub,t ,∀t ,∀b; Eb,∀b; P t ,P t , ru
t , r

d
t ,∀t}

Total consumption: P t +
∑

b∈B xb,t

Maximize
xb,t

∑
t∈T

(∑
b∈B

ub,txb,t − pt

∑
b∈B

xb,t

)
subject to

P t +
∑
b∈B

xb,t − P t−1 −
∑
b∈B

xb,t−1 ≤ ru
t t ∈ T−1

P t−1 +
∑
b∈B

xb,t−1 − P t −
∑
b∈B

xb,t ≤ rd
t t ∈ T−1

0 ≤ xb,t ≤ Eb b ∈ B, t ∈ T
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Conclusions

• A new method to forecast price-responsive electricity consumption
one-step/multiple-steps ahead.

• The method can be exploited to produce market bids for flexible
electricity consumers

• A two-step algorithm to statistically approximate the exact
inverse-optimization solution.

• A validation scheme to minimize the out of sample prediction error.

• The proposed methodology has been evaluated on:
• A synthetic data set corresponding to a cluster of price-responsive buildings

equipped with a heat pump and MPC.
• A data set from a real-world experiment involving electricity consumers

able to react to the electricity price.

• The non-linearity between price and aggregate load is well described
by our methodology.
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Future Work

• Dealing with errors in the measurements and with bounded rationality
(suboptimality).

• Examining more flexible functional forms between model parameters and
regressors.

• Investigating statistically consistent set-valued functions (feasibility set as
a function of regressors)

• Testing the methodology on other data sets.
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Contacts

Any questions?

Juan Miguel Morales
juan.morales@uma.es

OASYS Webpage: oasys.uma.es

Full papers
Short-term forecasting of price-responsive loads using inverse optimization and

A data-driven bidding model for a cluster of price-responsive consumers of electricity
are available online at IEEExplore

http://ieeexplore.ieee.org/document/7859377/
https://ieeexplore.ieee.org/document/7416249/
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