

Keep the Lights on and the Information Flowing

Daniel Kirschen

Donald W. and Ruth Mary Close Professor of Electrical Engineering

University of Washington

© 2013 D. Kirschen and University of Washington

Acknowledgements

- Prof. François Bouffard (McGill University)
- Dr. Matheos Pantelli (University of Manchester)

Why study blackouts?

- Cost of the blackouts
 - Direct cost (damaged equipment, ..)
 - Indirect cost (loss of economic activity)
 - Social cost

- Cost of preventing blackouts
 - Large, on-going
 - Are we spending our money wisely?

The conventional explanation

Triggering event

Triggering event

Sagging conductor

Cascading outages

N-1 security

The system should remain stable following the loss of a single component

So, why do we get blackouts?

- Except under extreme weather conditions, the probability of losing two or more components nearly simultaneously is very small
- True if these outages are assumed to be statistically independent events
- But aren't they?

Classical power system security framework

 Operator must act to keep the system in the normal state or bring it back there if an incident takes it into the abnormal state

Normal state

• Stable

All electrical variables are within their normal range

N-1 secure:

 The safety margin between the state of the system and its stability limits is sufficient

Electrically abnormal state

- The margin between the operating state of the system and its stability limit does not meet the security criteria OR
- The system is unstable OR
- Some load has been disconnected (either involuntarily or voluntarily to prevent a collapse of the system)

Limitations of the classical framework

- Considers only the "electrical" part of the system
- Considers only "electrical" events
 - Faults on transmission lines
 - Failures of generating units
 - Changes in the load
- Assumes that the operator has a perfect knowledge and understanding of the state and behavior of the system

Power system infrastructure

- Electrical infrastructure
 - Lines, cables, generators, transformers, loads, ...
- Information infrastructure
 - Control centers,
 communication links,
 measurement devices,
 protective relays, control
 systems, ...
- Human infrastructure
 - Operators responsible for maintaining the security of the system (keeping the lights on)

Role of the information infrastructure

Monitoring

- Keep the operator informed
 - Status of component, voltage and flow measurements,
 state estimation, on-line security assessment

Control

- Automatic:
 - protection relays, automatic voltage regulators, automatic generation control
- With operator intervention:
 - remote switching, optimal power flow, load shedding

Failures in the information infrastructure

Examples

- Malfunctions of protection relay
- Incorrect or unavailable measurement
- Failure of a remote control command
- Non-convergence of state estimator program
- Loss of a communication link
- Software crash
- Some redundancy:
 - Backup protection, backup computer system, etc...

New power system security framework

- Informationally abnormal state
 - Any component of the information infrastructure has stopped operating or has malfunctioned

- Combined abnormal state
 - Abnormal from both the electrical and informational perspectives

New power system security framework

Transitions

Examples

Incident	Transition
North America (2003)	D1
London, UK (2003)	C2
West Midlands, UK (2003)	C2
Italy (2003)	D1
UCTE (2006)	D1
WSCC (1996)	C2
Ireland (2005)	D4
Québec (1988)	D2
Québec (c. 1985)	C3
Sweden/Denmark (2003)	-

Arizona-Southern California Outages on September 8, 2011

Enhancing the information infrastructure

- Enhanced functionality
 - Better information about the state of the system
 - Faster, more accurate control actions
 - → Need for safety margin is reduced
 - → Economics pushes towards operation at the limit
 - → Risk of customer outages is not necessarily reduced

Enhancing the information infrastructure

- Enhanced reliability
 - Reduce risks
 - Missing or incorrect information
 - Incorrect or failed control action
 - → Significant reduction in risk of customer outages

Enhanced modeling

- Electrical infrastructure
 - Excellent structural and functional models
 - Reasonably good reliability data
- Information infrastructure
 - Good structural models
 - Very poor functional models
 - Complete lack of reliability data
- Human infrastructure
 - **—** ?

What is the state of the system?

Situation Awareness (SA)

"The perception of the elements in the environment within a volume of time and space, the comprehension of their meaning and the projection of their status in the near future".

Main sources of lack of SA

Software applications

- Examples: Alarm processing, State estimator, contingency analysis tools, mimic diagram
- USA/Canada blackout in 2003

Real-time measurements

• Missing, conflicting or ambiguous data can create confusion

Automation

- Out-of-the-loop syndrome
- · Lack of operators' timely and effective reaction when required

Environmental factors

• Data/alarm overload, high complexity of Graphical User Interface, time pressure, ambient noise levels

Individual factors

- Lack of experience and training, fatigue, limited working memory capacity, inadequate knowledge
- UCTE incident in 2006

Communication with others

- Communication within the same control center or with different control centers
- Italian blackout in 2003

A very simple model of SA

Sufficient

Operators are able to receive and interpret correctly the required information

Effective reaction to electrical disturbance

Insufficient

Operators fail to form an accurate and complete picture of their control area

- 1. No action
- Correct but delayed action
- 3. Incorrect action

Results based on this simple model

- Insufficient SA: 85 % of the critical overloads lead to cascading phase due to lack of operators' response.
- Sufficient SA: no cascading failures or load shedding

Conclusions

- Proposed framework clarifies how failures in the information infrastructure affect the ability of the power system to deliver energy to consumers
- Provides a basis for analyzing in more details the mechanisms that could lead to major problems
- Analysis of actual incidents shows that this framework matches real-life
- Need to get a better understanding of SA
- Need quantification of SA