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INTRODUCTION
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World Energy Production in 2006

t Gas & Liqg. 2.5%

Nuclear 5.9%

i Renewable 1.6%
6.3%

Coal 27.4%

Note: fossil fuels represent about 84% of the total.



NUCLEAR REACTORS
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U.S. Department of Energy's Office of Nuclear
Energy, Science and Technology:

Generation 1V Nuclear Reactors

» Sustainability

» Economical

» Reliability

» Proliferation-resistance

» Safety — Self-regulating — no Chernobyl



SA PBMR Reactor
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Improvement of German design (21 years running)

Outlet working temperature — 950°C
TD efficiency higher than conventional
nuclear reactors. Self-annealing of Irradiation
damage.

Moderator and neutron reflector are from graphite

Inherent safety self regulation mechanism
Reason: Doppler broadening of neutron fission
reaction cross-section peak



SA PBMR Reactor
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= Direct cycle reactor (Brayton cycle)
No heat transfer system

= Coolant i1s He gas

= Small reactor: 250 or 400 MWth
Suitable for urban development
Reactor design: Seldom stoppages (Normal
LWR - 18 to 24 months fuel replacement)



Helium Test
Facility
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Main Loop Characteristics
Scheduled Test

Pressure Range 3.2MPa to 9.5MPa
Main Loop

Temperature Range up to 660°C**
Maximum Flow

@ max pressure 2.47kg/s @ 9.5MPa
Target level of
purification >99.997% pure He

**Temperatures up to 1100C are generated
within test sections
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Unique feature of PBMR

Fuel elements — TRISO particle & pebble

Containment of radioactive nuclides
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Movement of pebbles through the reactor
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SA PBMR Reactor
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Containment of radioactive nuclides

Some statistics for 110 MWe reactor

¢ 360,000 pebbles in core

¢ About 3,000 pebbles handled by FHS each day
¢ About 350 pebbles are discarded daily

¢ One pebble discharged every 30 seconds

¢ Average pebble cycles through core 10 times

Fuel handling Is most maintenance-intensive part
of plant but is handled automatically
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Schematic outlay
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Coated fuel particle (TRISO)
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Size of the TRISO particle

SEM image of
TRISO on the
head of a pin
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Size of the TRISO particle

Dissected particle on point of a pin. Piece of cake?



Buffer & IPyC layers

Buffer layer

» Absorber of recoll
fission products

e Traps fission gases

* Absorbs thermal
stresses

IPyC

o Similar to buffer
layer

» Growth layer for
SIC layer

 Diffusion barrier for
some elements

University of Pretoria
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Chemically etched IPyC
Microstructure: Spheres with openings In between
Traps fission gases & Absorbs thermal stresses
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Inner microstructure: Concentric hollow “spheres’
Functions: Gas absorption & accommodation of
termal expansions and contractions.



SIC layer

IPyC University of Pretoria

 Malin diffusion
barrier for fission
products.

 Mechanical stren-

ath and ri

HLII Al 1

e ; o & b §7 - 5 ;
o . ; ; g A -

e ; & 3 P2l t I

Mag= 469K X 10pm WD= 3mm EHT = 3.00 kv Signal A = ESB Date p 2007 Time :10:52:5 p a r I C e

Noise Reduction = Frame Avg ESB Grid= 0V

Stronger bonding between IPyC and SIC than with

OPyC. SIC: facetted crystals - columnar growth
(arrows).
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SIC layer on glassy carbon (Sigradur®) substrate.
Contact layer - very small SiC crystals. Increasing
thickness - larger SIC crystallites form columnar
structure.
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Twins T
Stacking faults SF

Defects necessary
for mechanical
strength.

WD= 5mm EHT = 3.00 kV ignal A= InLens Date :27 Jul 2007 Time :9:40:25
Nuise duction = Av_q. ESB Grid= 0V I
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Chemlcally etched SIC at SIC/OPyC interface
showing substrate for epitaxial layer. Homo-epitaxy:
crystal continues to grow. Epitaxy: a new poly-type.
Magnification bar is 200 nm.
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Chemlcally etched
~ SIC at SIC/OPyC
Interface.

Circle: Uneven etchlng near stackmg faults. Note
different etching patterns: rough R and smooth S on
different faces of twinned crystals - different chemical
oroperties of the Si and C faces of SIC crystals.




SIC / IPyC Interface
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IPyC

Conclusion
OPyC layer less
strongly bonded
to SIC layer

Noise Reduction = Frame Avg ESB Grid= 0V

Mechanical shocks to TRISO: OPyC layer breaks loose

keeping SIC layer (1.e. main diffusion barrier) intact
thereby keeping radioactive fission products from escaping.

EHT = 3.00 kv Signal = ESB 07 Time 10:52:5




OPyC LAYER
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Malin functions of OPyC layer

* Protect SIC from external gas reactions during
manufacturing.
« Another barrier for gaseous fission product release.

 Provide compressive pre-stressing of SIiC layer.

 Protect SIC layer during handling.

Microstructure of OPyC is similar to IPyC. Also cavities
and spherical PyC.



SA PBMR Reactor
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Functions of the layers
 Inner porous graphite
Absortion of gaseous fission products
Thermal expansion
 Inner pyrolytic graphite
Absortion & growth basis for SIC layer
e SIC
Fission product containment (diffusion barrier)
Strength
« Quter pyrolytic graphite
Protection
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Channeling: Room temperature bombardment — amorphization
600°C bombardment — no radiation damage



SUMMARY

Energy crisis
- Nuclear power plants are coming back into
fashion.
- Generation 1V nuclear power plants: PBMR
PBMR design
- Containment of radioactive nuclides - fuel
- Safe: self-regulating
Coated fuel particles
- Carbon layers — gas containment
- SIC layer diffusion barrier for metals

University of Pretoria



Africa’s Energy Consumption
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Total Energy Consumption in 2003
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Tablel: 2003 World & USA proven fossil fuel reser-
ves profitably recoverable with current technology.

Resource World Reserves USA Reserves Lifetime*

1015 kWh 101> kWh Years
Oil 2.050982 0.03516 10
Gas 1.582186 0.055669 9
Coal 7.910929 2.050982 250
Oil Sands 0.439496 0.03516 8

*Lifetime: USA reserves/USA 2003 production rate.



Energy crisis in fossil fuels
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Conclusions from Table
*» Limited lifetime for world’s fossil fuel.
(Profitability)
¢ Enhanced by increasing affluency of
countries.
¢ Coal not a medium term solution:
# Kyoto Protocol
# Radioactivity
# SO, —acid rain
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Table 2. Renewable energies and applications.

Type
Solar energy

Wind energy

Application
Thermal: Heating and cooling
buildings, Domestic hot water,

swimming pools, solar furnaces.

Electricity: Photovoltaics
Electricity: Wind turbines
Mechanical: Water pumping,
grinding



ewable energy option
Table 2. (Continued)
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Type Application

Hydro energy Electricity: Turbines
Mechanical: Water wheels

Biomass Heat: Direct combustion
Electricity

Fuels: gas, liquids
Geothermal energy  Electricity via turbines
Heat: central heating.
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USA Energy Consumption in 2003
Gas 23%
Coal 23%

Renewables 6%

Nuclear 8%

Petroleum 40%
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USA Renewable Energy in 2003

Biomass 47%

Wind 2% Solar Energy 1%

Geothermal 5%

Hydroelectricity 45%



THE PBMR NUCLEAR

POWER PLANT OPTION
PBMR Solutions.
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