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South Africa

About 50 M inhabitants

11 ffi i l l11 official languages

Republic: Executive PresidentRepublic:  Executive President

9 Provinces
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PRETORIA
(Metropolitain City of Tswane)

Capital of South Africa

1.2 M citizens (Pretoria)

Jacaranda city

University city

• University of Pretoria• University of Pretoria
• University of South Africa
• Technical University of Tswane• Technical University of Tswane
• Medical University of South Africa
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UNIVERSITY of PRETORIA

48k full-time students (71k)48k full-time students (71k)

All t f f ltiAll types of faculties

Highest research output
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W ld E P d ti i 2006World Energy Production in 2006

Oil  33.5%
Plant Gas & Liq. 2.5%

C l 27 4%

Nuclear 5.9%

Renewable 1.6%
Coal  27.4%

Gas 22.8%

Hydro 6.3%

Gas  22.8%

Note:  fossil fuels represent about 84% of the total.
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U S Department of Energy's Office of NuclearU.S. Department of Energy s Office of Nuclear 
Energy, Science and Technology:

Generation IV Nuclear Reactors

 Sustainability
 Economical
 Reliability Reliability
 Proliferation-resistance
 Safety – Self-regulating – no Chernobyl
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SA PBMR Reactor 

f d i ( i ) Improvement of German design (21 years running)

 Outlet working temperature 950oC Outlet working temperature – 950 C
TD efficiency higher than conventional

l t S lf li f i di tinuclear reactors.  Self-annealing of irradiation
damage.  

 Moderator and neutron reflector are from graphite

 Inherent safety self regulation mechanism
Reason:  Doppler broadening of neutron fissionpp g

reaction cross-section peak 
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SA PBMR Reactor 

 Direct cycle reactor (Brayton cycle)
No heat transfer system 

 Coolant is He gas Coolant is He gas

 Small reactor: 250 or 400 MWthS W

Suitable for urban development

Reactor design:  Seldom stoppages (Normal 

LWR - 18 to 24 months fuel replacement)
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SA PBMR Reactor 

Main Loop CharacteristicsMain Loop Characteristics
Scheduled Test 

Pressure Range 3.2MPa to 9.5MPa
Main Loop 

Temperature Range up to 660°C**
Maximum Flow 

@ max pressure 2 47kg/s @ 9 5MPa@ max pressure 2.47kg/s @ 9.5MPa
Target level of 

purification >99.997% pure He

**Temperatures up to 1100C are generated 
within test sections

Helium Test 
Facility



SA PBMR Reactor
University of Pretoria

SA PBMR Reactor 

Unique feature of PBMR

Fuel elements – TRISO particle & pebble

Containment of radioactive nuclides
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Movement of pebbles through the reactorMovement of pebbles through the reactor
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Some statistics for 110 MWe reactorSome statistics for 110 MWe reactor
♦ 360,000 pebbles in core
♦ About 3 000 pebbles handled by FHS each day♦ About 3,000 pebbles handled by FHS each day
♦ About 350 pebbles are discarded daily

bbl di h d d♦ One pebble discharged every 30 seconds
♦ Average pebble cycles through core 10 times

Fuel handling is most maintenance-intensive partFuel handling is most maintenance intensive part 
of plant but is handled automatically
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Coated fuel particle (TRISO)Coated fuel particle (TRISO) 
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Size of the TRISO particlep

SEM image of 
TRISO on theTRISO on the 
head of a pin 



SA PBMR Reactor
University of Pretoria

Size of the TRISO particlep

Dissected particle on point of a pin.   Piece of cake?
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Buffer layer
• Absorber of recoil
fission productsfission products

• Traps fission gases
Ab b h l SiC IPyC Buffer• Absorbs thermal
stresses 

IPyC
•  Similar to bufferS o bu e

layer
• Growth layer for• Growth layer for
SiC layer
Diff i b i f• Diffusion barrier for
some elements
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IPyC layer

Chemically etched IPyC
Microstructure: Spheres with openings in betweenp p g
Traps fission gases & Absorbs thermal stresses
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IPyC layer

Inner microstructure: Concentric hollow “spheres”
F i G b i & d i fFunctions: Gas absorption & accommodation of
termal expansions and contractions.



SiC layer

University of PretoriaIPyC

• Main diffusion
barrier for fission
products.p

• Mechanical stren-
gth and rigidty toOPyC gth and rigidty to
particle

G118-C2-1c

10 m

OPyC

Stronger bonding between IPyC and SiC than with
OP C SiC f d l l h

G118 C2 1c

OPyC.  SiC:  facetted crystals - columnar growth 
(arrows).
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SiC layer

SiC

Carbon

SiC layer on glassy carbon (Sigradur®) substrate
B3-24 B3-BS-32

SiC layer on glassy carbon (Sigradur®) substrate.
Contact layer - very small SiC crystals.  Increasing
thi k l SiC t llit f lthickness - larger SiC crystallites form columnar 
structure. 
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SiC layer

Twins T
Stacking faults SFStacking faults SF 

T

Defects necessary
SF

Defects necessary 
for mechanical 
strength

Chemically etched SiC at SiC/OPyC interface
G118-11-364

strength.

Chemically etched SiC at SiC/OPyC interface
showing substrate for epitaxial layer.  Homo-epitaxy:

t l ti t E it l tcrystal continues to grow. Epitaxy: a new poly-type.
Magnification bar is 200 nm.
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SiC layer
S

Chemically etched S
S S

S R

RR

R

y
SiC at SiC/OPyC 
interfaceinterface.

Circle: Uneven etching near stacking faults Note
G118 12-50

Circle: Uneven etching near stacking faults.  Note 
different etching patterns: rough R and smooth S on 
diff t f f t i d t l diff t h i ldifferent faces of twinned crystals - different chemical
properties of the Si and C faces of SiC crystals.
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IPyC

ConclusionConclusion
OPyC layer less 
strongly bondedstrongly bonded 
to SiC layer

OP C

G118 C2 1

10 m

OPyC

Mechanical shocks to TRISO: OPyC layer breaks loose 
keeping SiC layer (i e main diffusion barrier) intact

G118-C2-1c

keeping SiC layer (i.e. main diffusion barrier) intact 
thereby keeping radioactive fission products from escaping. 
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Main functions of OPyC layer

• Protect SiC from external gas reactions during•   Protect SiC from external gas reactions during 
manufacturing.

• Another barrier for gaseous fission product release•   Another barrier for gaseous fission product release.
•   Provide compressive pre-stressing of SiC layer. 
• Protect SiC layer during handling

Mi t t f OP C i i il t IP C Al iti

•   Protect SiC layer during handling.

Microstructure of OPyC is similar to IPyC.  Also cavities 
and spherical PyC.  
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Functions of the layersFunctions of the layers
• Inner porous graphite

Ab i f fi i dAbsortion of gaseous fission products
Thermal expansion

• Inner pyrolytic graphite
Absortion & growth basis for SiC layerbso o & g ow b s s o S C ye

• SiC 
Fission product containment (diffusion barrier)Fission product containment (diffusion barrier)
Strength 

O t l ti hit• Outer pyrolytic graphite
Protection
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Channeling: Room temperature bombardment – amorphization
600 C b b d di i d600oC bombardment – no radiation damage
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SUMMARY
Energy crisis

- Nuclear power plants are coming  back into
fashion.

- Generation IV nuclear power plants: PBMR
PBMR designPBMR design

- Containment of radioactive nuclides - fuel
S f lf l ti- Safe: self-regulating

Coated fuel particles
- Carbon layers – gas containment
- SiC layer diffusion barrier for metalsy
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Total Energy Consumption in 2003
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T bl 1 2003 W ld & USA f il f l

Energy crisis in fossil fuels

Table1: 2003 World & USA proven fossil fuel reser-
ves profitably recoverable with current technology.
Resource World Reserves USA Reserves Lifetime* 

1015 kWh 1015 kWh Y1015 kWh            1015 kWh Years
Oil             2.050982 0.03516 10

Gas 1.582186 0.055669 9
C l 7 910929 2 050982 250Coal 7.910929 2.050982 250
Oil Sands 0.439496 0.03516 8          
*Lifetime:  USA reserves/USA 2003 production rate.
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Energy crisis in fossil fuels
Conclusions from TableConclusions from Table
 Limited lifetime for world’s fossil fuel.

(Profitability)
 E h d b i i ffl f Enhanced by increasing affluency of 

countries.
 Coal not a medium term solution:

# K P l#  Kyoto Protocol 
#  Radioactivityy
#  SO2 – acid rain
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Renewable energy option

Table 2. Renewable energies and applications.
Type ApplicationType Application
Solar energy Thermal: Heating and cooling

buildings, Domestic hot water,
swimming pools solar furnacesswimming pools, solar furnaces.
Electricity: Photovoltaics

Wind energy Electricity: Wind turbines
Mechanical: Water pumpingMechanical: Water pumping,
grinding



Renewable energy option
University of Pretoria

Table 2 (Continued)

Renewable energy option
Table 2. (Continued)
Type Application
Hydro energy Electricity: Turbines

Mechanical: Water wheelsMechanical: Water wheels
Biomass Heat: Direct combustion

Electricity
Fuels: gas liquidsFuels: gas, liquids

Geothermal energy Electricity via turbines
Heat: central heating.
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Renewable energy option
USA Energy Consumption in 2003

Coal 23%
Gas 23%

Renewables 6%

Petroleum 40%

Nuclear 8%

Petroleum 40%
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Renewable energy option
USA Renewable Energy in 2003

Biomass 47%

Solar Energy 1%Wind 2%

Geothermal 5%

Hydroelectricity 45%



THE PBMR NUCLEAR 
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POWER PLANT OPTION
PBMR SolutionsPBMR Solutions.


