
//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Chapter

2

INTRODUCTION TO
REQUIREMENTS

Why?

GLOSSARY CONCEPTS

System

Stakeholder

Requirement

Attribute

Vision

Function

Performance

Objective

Quality

Resource Saving

Workload Capacity

Resource

Cost

Budget

Design Idea

Condition

Target

Constraint

Benchmark

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

2.1 Introduction to Requirements Specification

Peter Morris, having studied numerous projects in the US and UK

covering the period from 1940 to 1990, identifies that one of the

major causes of project problems is that our current management and

engineering culture consistently fails sufficiently to articulate require-

ments or cope with change in them (Morris 1994).

More recently, in 2001, having conducted a thorough review of the

recent systems engineering industry literature, Ralph Young con-

cludes that the causes of project failure are ineffective practices for

handling requirements. He estimates the necessary improvements in

such practices could be financed by approximately one third of the

current total cost of project failures. Additional gains would be that

customer satisfaction and the quality of results would also improve

(Young 2001).

You probably feel that you need to ask more probing questions about

the project requirements that you are working on. You are likely,

unfortunately, to be able safely to assume that nobody in your senior

management and none of your customers has a well-developed sense

of exactly what requirements they really want or need. They may all

have the dangerous illusion that they do. However, they are unlikely to

have a clear enough requirement specification. Nor are they likely to

have requirement ideas which are ‘shared precisely’ by all their col-

leagues and the other stakeholders.

Definition of Requirements

Requirements give information to the system designers and to a wide

range of stakeholders. They state what the stakeholders want the

system to achieve.

Requirements can be classified into ‘requirement types’ as follows:

0. Vision: at the highest level, the future direction for a system.
1. Function Requirements: what a system has to ‘do’: the essence

of a system, its mission and fundamental functionality.
2. Performance Requirements: the performance levels that the sta-

keholders want – their objectives. How good? These can be
further classified as:

. Qualities: how well the system performs, for example: usability,
availability and customer satisfaction.

. Resource Savings: the required improvement in resource util-
ization: relative economic and other resource savings com-
pared to defined benchmarks. These are known simply as
‘Savings.’

Introduction to Requirements 37

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

. Workload Capacities: how much the system performs. In other
words, the required capacity of the system processes. For
example, system peak processing volumes, speeds of execu-
tion and data storage capacity.

3. Resource Requirements: the levels of resources that stakeholders
plan to expend to develop and operate a system. Resources have
to bebalancedagainst the stakeholders’ perceived values gained
from the system functions and the system performance levels.

4. Design Constraints: these are any design ideas that must be
included in the system design.

5. Condition Constraints: theseareany additional constraints to those
imposed by the function requirements, the performance require-
ments, the resource requirements and the design constraints. Con-
dition constraints are often used to capture system-level constraints
(for example, ‘the system must be legal in Europe’).

From the viewpoint of understanding ‘competitiveness’, ‘levels of

achievement’ and ‘associated risk,’ the performance requirements

are by far the most interesting requirements. Yet, traditionally, too

much attention has been given to specification of function require-

ments and resource requirements (such as financial budgets, deadlines

and headcounts). We need a more balanced requirement specification

that includes all targets and all constraints. They all need to be equally

clear and equally capable of being tested.

Key Issues for Requirements

Here are some key issues to consider when using or specifying

requirements:

Identifying the critical stakeholders

Failing to identify the critical set of stakeholders is a common problem.

The stakeholders for a system are anyone affected by the system or

who can impact the system. This includes system users, maintainers,

financiers, managers, developers, critics and others. If you fail to

consult and analyze the critical stakeholders, then your requirements

will risk being dangerously incomplete. By definition this will threaten

the existence of your system, or at least its profitability.

Hint: Consider the entire lifecycle (including retirement or replacement)
of a system or product when looking for stakeholders. Identify different
categories of stakeholder (for example, internal and external (including the
more remote) stakeholders).

(Use the Authority, Source and Stakeholder parameters to specify the
stakeholders.)

38 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Separating ends and means

It is important to distinguish ‘ends’ (requirements) from ‘means.’

‘Means’ are the design ideas we choose: the architecture, technology,

strategies and other synonyms (They are whatever is needed to achieve

the requirements).

It is common to find design ideas included within requirement

specifications. I call them ‘false requirements’. Only if the design idea

is an intentional, conscious design constraint should it be in a require-

ment specification.

All ‘false requirements’ should be removed from requirement specifi-

cations. They should then be investigated; to see if they reveal other

hidden additional requirements, which ought to be included (see the
example in Section 2.8. See also Chapter 3, which discusses separation of
functions from design ideas).

Identifying the key requirements

You must try to identify the stakeholder requirements which are either

‘vital’ (system threatening) or ‘profitable’ or ‘highest risk’ for your

system. Key requirements have the greatest impact on your most

critical stakeholder values and system costs. You do not need (that

is, are not economically obliged) to seriously consider implementing

any other stakeholder needs than these.

Hints: Look for areas with potentially high development or operational
costs. Ask the stakeholders for their opinions on their most crucial
requirements.

Note: The concept of identification of the few key requirements (I often use
the concept ‘Top Ten’) does not mean that they will not need to be
decomposed into more elementary requirements (see below, Handling
Complex Requirements).

Remember, for many projects, even delivering a single top objec-
tive on time and to financial budget, would be an advance on their
current experiences!

Quantifying success and failure

Requirements need to be understood in terms of success and failure

levels. You must ensure you have quantified numeric values specified

for each of your performance and resource attributes. Knowledge of all

the targets (‘what we aim for’) and constraints (‘the limits we need to

respect’) is vital for both system design and project management. You

Introduction to Requirements 39

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

need to understand exactly what level of achievement is expected and

then design towards it. Specifically:

. Success: You also need to know when you have met your required

levels of requirements. Reaching each single planned level is ‘partial’

success. Your project is a complete ‘success’ when all success levels

are met, for all performance goals, within all budgets. (Success levels
are targets specified using Goal and Budget parameters.)

. Failure: You need to specify the attribute levels that you have to

reach in order to avoid some type of stakeholder failure (such as ‘fail

to get desired market share’). (These are constraints stated using Fail
parameters. They are not as critical as the Survival constraints).

. Survival: You need to determine and specify the numeric limits

which would classify your project as a total failure; so all stake-

holders know the minimum survival requirements (These are con-
straints expressed using Survival parameters). These become your

highest priority requirements, as they are key to your project’s

continued existence. Survival is a higher priority than success!
. Potential: It is also useful to keep a record of desired, but uncom-

mitted and unbudgeted, requirements. Knowing these, even when

you cannot deliver them immediately, is key to being the first one to

deliver them when it does become possible. (These are specified using
the parameters, Stretch – a deliberate engineering challenge set for the
system engineers – and Wish – an expression of the levels which
stakeholders ‘dream of’.)

See Chapters 4, 5 and 6, which describe how to quantify performance
requirements and resource requirements using the Scale, Goal or Budget
(success), Fail (failure), Survival (survival), Stretch (challenge) and Wish
(dream) parameters.

Understanding the past and the future – benchmarks and
state-of-the-art

You need to understand the context of your requirements. What are

the current ‘benchmark’ performance levels of your existing system

and competitors’ systems?

Hint: There is always some existing system to usefully benchmark!

Are your plans ambitious enough? Are they state-of-the-art? How do

they measure up to your known competitors? How do they fit with

current trends in technology? You need to know these factors to

understand the level of risk involved and the likely costs. State-of-

the-art implies doing something nobody else has yet achieved. This

means that costs and success are both uncertain. Don’t let that stop

you! However, do plan to control this situation rigorously.

40 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

See Chapter 4, which describes how to express benchmarks, trends and
state-of-the-art levels using the Past, Trend and Record parameters.

Considering the timescales for delivery of requirements

To assess whether your requirements include adequately specified

‘time conditions’ (dates), you should ask questions, such as: How

early are the stakeholders going to receive some benefits from this

system? Are the requirements specified for the short term needs only?

Are unrealistically long investment timescales set?

Most importantly, you should plan the early delivery of some require-

ments to some stakeholders. There ought to be a steady stream of

value delivery throughout the project life.

Hint: Analyzing the requirements of the different stakeholders is one way
to identify the opportunities for early deliverables. (See also Chapter 10 on
Evolutionary Project Management.)

EXAMPLE One client ‘delivered’ a mobile telecommunications ‘base station’ eight months
‘early’ to its system installers (an internal stakeholder), who were scheduled to install
it ‘for real’, later, in Japan. The installers immediately discovered many serious
installation problems, which would have delayed installation. The development

project (another internal stakeholder) then had eight months to fix these problems
and, not surprisingly, the ultimate system was successfully installed on time (Erics-
son, Case Study, 1992, ‘On Succeeding’, Internal Publication) (Järkvik et al. 1994).

Avoiding the ‘ambiguity trap’

Beware requirements that are so ‘general’ that there is no clear idea of

exactly what is required. Everyone can agree to them! For example,

‘increase security,’ ‘make the system more user-friendly’ and ‘provide a

competitive edge.’

The problems due to vague requirements will inevitably arise later,

because everyone’s interpretation of what the ‘general’ terms actually
mean is different. The lack of precise definition means that the differ-

ences of opinion are not confronted at an early stage, during specifica-

tion, and the differences are unspecified. No one has really agreed to the

exact requirements and nobody is doing anything about it.

All too often, projects deliberately allow ambiguous specifications to

be used, without clarification and agreement. There is the ‘illusion of

progress being made.’ The requirements are ‘complete and agreed’; we

think?

This problem of ‘ambiguous requirements’ has to be tackled both by

communication and by action. Clarifying all the key requirements, as

Introduction to Requirements 41

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

discussed above, helps. However, as a means to get the ‘right’ require-

ments, clarification is no substitute for evolutionary delivery (see
Chapter 10). Frequent and early delivery steps allow stakeholder feed-

back and correction of bad (vague or irrelevant) requirements and

designs. The relevance of the project work to your organization has to

be checked: early, measurably and frequently.

Handling complex requirements

Ambiguity (‘different interpretations are possible’) is one trap. But an

entirely different trap exists in losing control of a project because you

are operating with too few detailed requirements. The degree of detail

you will need to specify is dependent on the size and criticality of what

you are trying to control, as well as on the degree of risk you are

willing to accept.

It is a balancing act. You must keep your attention firmly rooted on

the few critical (key) requirements, while ensuring there is adequate

background detail to permit you sufficient control. You can do this by

specifying a set of complex requirements (the ‘Top Ten’) and, then

splitting each of them into their more detailed ‘elementary’ compon-

ents. You then can create any number of useful system views (such as

‘Risks’, ‘Bottlenecks’ and ‘Progress’) with appropriate detail for your

project management purposes.

Don’t get overwhelmed by the system detail. Capture it. But, always

remember to ensure the focus is on your stakeholders’ critical

requirements.

Allowing requirements to evolve

Real requirements change. There is no way you can stop them! As you

run a project or deliver to initial stakeholders, you will get new insights

into which requirements are actually useful. Stakeholders, too, will learn

from their early experiences using a new system, what they really want.

Business requirements will also inevitably change over time, in response

to both the internal and external business environments.

For all these reasons, requirements must be allowed to evolve during a

project, and during the system lifetime. You are not obliged to

implement any changes to the system instantly. You can do so at the

‘right’ time. But, it is essential to keep the specification of requirements

realistic and up to date. They must reflect current reality. You should

not freeze the requirement specification! You can always choose to

design, or build or test from a given version of the requirements,

temporarily ignoring any updates.

42 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

For contractual and other sound reasons, you should always ensure

that you document the evolution of requirements (for example, by

using automated requirement specification tools that track changed

versions).

You need also to build a web of relationships between requirements,

designs, stakeholders and project plans. This will make it safer to

evolve and change, as you will be better able to identify any potentially

damaging side effects and to recognize the most competitive change

possibilities. (Planguage offers a wealth of devices for making require-
ment relationships explicit. For example, by using qualifiers and par-
ameters, such as Authority, Source, Dependency and Impacts.)

2.2 Practical Example: What is ‘Flexibility
Improvement’?

Analyzing a requirement

You are told that a change is proposed to ‘improve flexibility’ within an

organization. The stated aim is that it will help you be more competitive

by enabling ‘faster tailored product releases.’ You are not quite sure what

this means. You decide to analyze and challenge the statement.

You first give the subject ‘improve flexibility’ an identity. Call it any

name you like. For simplicity (and to show we are addressing the

specified concerns), let’s call it ‘Flexibility.’

This could be written as:

Tag: Flexibility.

However, we usually drop the explicit use of ‘Tag’. So it (initially)

looks like this:

Flexibility:

To which you could add any relevant information that comes with the

idea, or which can be gained by asking key people a few simple

questions. For example:

Type: Quality Requirement.

Gist: To improve flexibility of product releases to the market <-

Marketing Director.

Authority: Marketing Director request.

Rationale: Supports ‘Time to Market’.

Note: The ‘Gist’ parameter is used to capture a short description of a
tagged concept.

Introduction to Requirements 43

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Then you can try to write down approximately what you think

Flexibility means. Then get others to write down what they think

it means. Try to get a group to agree to some appro-

ximate definition. Write an agreed brief description for the

‘improvement ambition level.’ The description might come out

like this:

Flexibility:

Ambition: Substantial improvement in the ease with which we can

change products and markets <- Requirement Owner: Jane.

Note: ‘Ambition’ is an alternative parameter to use instead of ‘Gist’ for a
quality target (goal). ‘Ambition’ should express the level of ambition in
words.

Now, from this, the function requirements can be identified as being to

‘Modify Product’ and to ‘Switch Market.’ These are the functions,

which we specifically intend to make ‘flexible’. (See also Chapter 3,
‘Function Requirements.’)

We can express these ideas in Planguage as follows:

Type: Function Requirement: {Modify Product, Switch Market}.

Modify Product -> Flexibility.

Switch Market: Supports: Flexibility.

Note: The two formats of the ‘Supports’ concept are illustrated. The ‘->’ is
a keyed icon format.(It is also used as an icon for Impacts.)

Further work can be carried out to establish the precise ‘Flex-

ibility’ requirements. For example, are completely new products

envisaged or is it just the existing products? Are the target

markets already established? It is likely that the critical stake-

holders already have ideas about where effort is to be directed. Is

there a specific current problem or is this a longer term, more

global aim?

Next, you can add a statement regarding which of the higher level

objectives would probably be impacted, in interesting ways, by

improved Flexibility. For example:

Flexibility:

Ambition: Substantial improvement in the ease with which we can

change products and markets <- Requirement Owner: Jane.

Supports: Performance: {Time to Market, Market Share, Customer

Brand Perception, Product Upgradeability} <- JBG assertion.

Note: ‘<-’ is the ‘Source’ keyed icon. You should use it to document where
any information comes from. ‘{ . . . }’ is a convenient way to signal a set of
things that belong together in some way.

44 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Also any impacted cost requirements should be identified. For example:

Is Supported By: Cost: {Architecture Development Costs, Research

Costs}.

Each of these impacted requirements might be considered for expan-

sion into a set of lower level requirements. For example, the quality

requirement, Product Upgradeability (mentioned above) could be

expanded as follows:

Product Upgradeability:

Type: Complex Quality Requirement.

Consists Of:

{Key Upgradeability:

Gist: Improve delivery of <upgrades> meeting <customer> <key

requirements>,

Acquisition Upgradeability:

Gist: Increase new product acquisition with aim to supply

<customer> <key requirements>,

Customer Installability:

Gist: Improve ability of<customers> to install the<upgrades>, other? }.

Note: words in fuzzy angle brackets (< >) denote words that we feel
require additional definition.

This is a simple identification of the various factors, which make up

Product Upgradeability. If we agree on them, they can be worked on,

to become more specific. The aim is that at some stage, each of these

requirements is specified with clear numeric targets that define it more

precisely than just using words.

Decomposition of Requirements

It may well be the case that each requirement needs to be

expanded into a further set of requirements. These, in turn, may

also need expanding resulting in a whole hierarchy of require-

ments.

At some stage, you identify the requirements that you do not

wish to decompose, or you are simply not able to decompose,

because they are the lowest levels of the hierarchy. Requirements

at the lowest level of a hierarchy are termed ‘elementary require-
ments.’ Note: that it is not necessary to identify all the elemen-

tary requirements. It is a question of finding the set of

requirements, elementary and complex, that best suits your cur-

rent purposes.

Introduction to Requirements 45

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Scalar Requirements

If the requirement concept can be described by ‘words implying

measurement’ (for example ‘improve,’ ‘better,’ ‘equal to’ and

‘reduce’), then that requirement is clearly definable in terms of

‘degrees of goodness.’ Once you have identified such a ‘scalar’ require-

ment, the next stage is to improve the definition by quantifying it.

You need to find (maybe create) a scale of measure that expresses a

unit of measurement for the requirement. Use a ‘Scale’ parameter to

specify your scale of measure.

If you identify several complementary scales of measure, for a single

requirement, then you actually have a ‘complex requirement’, and you

should consider specifying its set of elementary requirements in detail

(that is, each elementary requirement has its own Tag and Scale).

Note, the set of elementary Scales is the variable ‘idea’ that describes

the complex requirement. The scales of measure within a set don’t

‘add up’. They don’t have to.

Using your chosen scale of measure, you can try to represent the

current and past levels of performance (the benchmarks) and the

desired future states (the performance targets). You do this by defining

some specific numeric levels. (See Chapters 4 and 5 for further
explanation.)

EXAMPLE Cost to Upgrade Products:

Type: Savings Requirement.
Scale: Total cost, in % of annual profit, needed to develop <new products>.

Past [Last Year]: 4%. ‘‘Current level, a benchmark.’’
Goal [Next Year]: 3% <- Technical Director: JG. ‘‘Future desire, a target level.’’
Defining a scale of measure and using it to specify two points (Past and Goal) to describe
the degree of improvement in ‘Cost to Upgrade Products.’ Note: 1. That although this
involves a resource – it is actually setting an organizational performance requirement (an
objective) that we need to specifically plan to achieve (by finding relevant strategies). 2.
The [. . .] brackets (qualifiers) are helping to define ‘when’.

You don’t have to worry about the exact truth about requirements if it

is not easily available. It never is! But each specification step you take

should make things somewhat clearer (even if it is only to help make

other major defects in the requirements clearer). You should always be

totally honest about your uncertainty and about your sources of

information. If it seems worthwhile, you can always get more detailed

and be more exact at a later stage.

Hint: Discussing your scales of measure with your stakeholders might be
helpful.

46 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

You may be surprised about our definition of ‘Flexibility,’ but it

means exactly what we define it to mean. The tag, ‘Flexibility’ is just

an arbitrary reference to the definition (the tag is a ‘symbol’, like all

our human words). If you don’t like the tag, change it. How does

‘Product Development’ strike you? You can even have multiple syno-

nym tags for any concept, if that helps you communicate better with

different specification readers. Use what works for you!

2.3 Language Core: System Attributes and
Requirement Specification Types

System Attributes

There are several main Planguage specification types that we need in

order to describe a system. Let’s now look at the definition of these

terms before considering how to specify requirements.

System

A system can be described by its set of function attributes, perform-

ance attributes, resource attributes and design attributes. All these

attributes are can be qualified by conditions, which describe the time,

place and event(s) under which the attributes exist.

Attribute

An attribute is a characteristic of a system. Any specific system can be

described by a set of past, present and desired future attributes.

There are several different types of attribute. These include:

. Function attributes defining what a system does (mapping to the

processes).

FunctionResource Performance

Design
(Architecture)

C
o
n
d
i
t
i
o
n

C
o
n
d
i
t
i
o
n

Figure 2.1
The basic system attributes describing a system.

Introduction to Requirements 47

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

. Performance attributes defining how well or how much a system

performs (such as usability, availability and response time). How

good or how effective it is.
. Resource attributes defining what quantity of resources a system

requires, or what costs are incurred (such as development costs,

operational costs and human effort).

Resources are our necessary and potential fuels, and costs are the

experienced or planned expenditures (‘budgets’) of these limited

resources. Resources are a broad category of effort, time, data,

materials and money.

. Design attributes, defining the system architecture for a system.

Note: Very often in this book, the term ‘attribute’ is implied. So ‘performance
attribute,’ ‘resource attribute,’ ‘function attribute’ and ‘design attribute’
become, for short, ‘performance,’ ‘resource,’ ‘function’ and ‘design,’ respectively.

Function

A function is an action of a system or system component. Elementary

functions are ‘binary’ in nature: they are either present, or not, in

specifications or in real testable systems.

Each function has a set of associated performance and resource attrib-

utes, which make it useful and competitive in the real world. However,

a ‘pure’ function is ‘what? ’ a system does, without regard to either ‘how
well? ’ or ‘how much?’ (the resulting performance attributes) or ‘what
resources?’ (the resource attributes that will be utilized or consumed).

Note: My definition of ‘function’ is likely to differ from your current

definition. I specifically separate the four descriptive system attributes

of function, performance, resources and design from each other. My

justification is that this separation enables us to obtain better focus

within the ‘design engineering’ process.

Design engineering needs to be able to satisfy many competing

performance and resource attributes, simultaneously. Separating the

‘multiplicity of concerns’ helps identify all the individual concerns;

and this in turn, helps ensure they are all considered. This leads to

more competitive designs.

If we (mis-)use ‘function’ in an informal manner, to describe ‘designs’

and ‘features’ of a system (which is, unfortunately, common practice),

then we fail to see the essential distinctions amongst a ‘function

requirement,’ an ‘optional design’ or, even, a ‘design constraint.’

The result is that the design process is corrupted, and weaker designs

result since the designer has less understanding of the real design

options.

48 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

EXAMPLE User Interfacing:

Type: Function.
Gist: All basic user-accessible input and output capabilities within the system.

Note: This does not include the specific system interfaces (the human–computer interface
design ideas), which will be developed during the project, based on field trial feedback.
A simple function specification.

Performance

A performance attribute is a ‘potential effectiveness’ attribute of a

system. It is ‘how good ’ a system is, in objectively measurable terms.

Performance attributes:

. are valued by defined stakeholders

. are always capable of being specified quantitatively

. are variable (along a definable scale of measure)

. can be a complex notion, consisting of many elementary perform-

ance attributes
. can be traded off to some degree, by varying their level, against the

resources and/or the other performance attributes. The relative

priorities of performance attributes are a question of ‘which attri-

butes are more valued’ by the defined stakeholders.

Performance levels only partly determine how effective a specific

version of a system is, for a specific stakeholder’s needs. The practical

stakeholder environment determines the ‘final’ effectiveness that a

performance attribute can contribute to. For example, more system

speed will not always translate into earlier delivery of specific users’

results. And, increasing the average system reliability will not always

translate into more reliability, from a specific user’s practical point

of view.

Another way to express this is that performance in one component of a

system does not always translate into the same level of performance in

a larger environment. (Compare to the well-known circumstance of

the effectiveness of an engine on an icy road or, for that matter, the

effectiveness of your mind when put into a noisy environment.)

There are three types of performance attribute: quality, resource saving

and workload capacity. These are described as follows:

. QUALITY: A quality attribute describes ‘how well’ a system

performs. Examples of qualities are availability, usability, cus-

tomer satisfaction, staff development, environmental impact and

innovation.
. RESOURCE SAVING: A resource saving is a measure of

‘how much’ resource is ‘saved’ compared to some reference or

Introduction to Requirements 49

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

benchmark system. Resource savings are measures of performance,

which describe system costs in relation to alternative costs. They are,

you might say, a way of viewing relative costs for two systems at

once, rather than the absolute costs of one system alone; one system

will be the target system and, the other system will either be a past

benchmark system or a competitor’s system.

EXAMPLE This new car has 10% better fuel consumption than the last model.

EXAMPLE The cost per transaction for System X [New Version] might be 100 dollars, but the
savings for System X [New Version] might be expressed as ‘50% less cost’ compared
to System X [Last Version], which cost 200 dollars per transaction.

Other examples of resource savings include:

o operational savings of any resource (such as effort, money, time,

materials and space)
o capital investment savings (say, for activities such as for launch,

training, installation and acquisition).

. WORKLOAD CAPACITY OR CAPACITY: A workload capacity

attribute describes ‘how much’ a system can do. Workload capacity

describes the potential workload a system can tolerate.

Workload capacity attributes include:

o Throughput capacity: how much work can be done
o Storage capacity: how much information can be contained
o Responsiveness: how fast the system responds.

Resource

A resource is a system ‘input fuel’ attribute.

Resource is used as follows:

. to ‘start up’ or get a system going – expending a ‘capital cost’ –

investment
. to keep a system functioning (using or expending a resource is an

‘operational cost’)
. to bring about change in a system (expending a development or

maintenance cost).

‘Cost’ is the degree of a resource used (a cost benchmark) or planned

to be used (a cost budget or resource budget). For example: time, work-

hours, talented people, investment capital, staff costs, development

costs and operational costs.

50 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Resource attributes:

. are capable of being specified quantitatively (for example, ‘resource

use limits’ and ‘cost plans’)
. are variable (along a definable scale of measure)
. can be a complex notion, consisting of many elementary resource

concepts
. can have complex resource targets specified (there can be specific

resource allocation, using ‘qualifiers’, regarding when, where and

under which events it can be used)
. can be traded off, to some degree, against the performance attributes

and/or the other resource attributes.

Note: Many characteristics of a resource attribute are identical to those of
a performance attribute. The difference is that one is a ‘means’ (resource)
and the other is an ‘end’ (performance).

Design

The design of a system is also an observable system attribute. You can

look at any system and ask, ‘‘What is its design?’’ This knowledge is

useful for the following reasons:

. it explains how to reproduce the system

. it can explain the current performance levels and cost levels

. it can give you insights as to the ease of making specific design changes
or the need to upgrade specific components.

The design of a system can be specified at any number of levels: from

high-level strategies and architecture to low-level, detailed system

components. The precise terminology used is a matter of culture

and taste: a design attribute is anything that impacts the functionality,

performance and/or costs of a system.

In Planguage, a system design is modified by implementing a series of

Evo steps. Each Evo step can have one or more design ideas. A ‘design

idea’ is the primary output of a design process. It is the generic name

for any proposed design strategy, or system component, that we need

to identify, to specify, to analyze and perhaps to implement in order to

address the problem of reaching our stakeholder requirements. More

simply: design ideas are our ‘tools to reach our ends.’ It is any idea or

strategy, which possibly contributes to the ‘design solution.’

Requirement Types

Above, we looked at a system (or project) from a descriptive point of

view. This is also the benchmark view of a system, a view that we will

Introduction to Requirements 51

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

integrate with the specification of requirements. Below, we shall look

at the same concepts in terms of how to specify what we want in the

future.

Vision

At the highest level, there should be a vision statement for a system. A

vision or vision statement is a specific, long-range, overall category of

requirement. That means it can concern itself with future mission

and/or targets and/or constraints. It is a leadership statement for focus

and motivation. Visions are often defined in broad summary terms.

For example, ‘become world class.’ But there is no reason to be so

vague. Great practical visions1 are extremely concrete:

. ‘‘I believe that this nation should commit itself to achieving the goal,
before this decade is out, of landing a man on the moon and returning
him safely to the earth.’’

John F. Kennedy.

Delivered before a joint session of Congress, May 25, 1961.2

‘‘I believe that we must improve the numeric level of all critical product
and service qualities by an order of magnitude by the end of the decade
in order to remain competitive.’’3

John Young,

CEO Hewlett Packard Company around end 1970s,

Known at the ‘10X’ policy.

‘‘We shall go on to the end, we shall fight in France, we shall fight on
the seas and oceans, we shall fight with growing confidence and growing
strength in the air, we shall defend our island, whatever the cost may be,
we shall fight on the beaches, we shall fight on the landing grounds, we
shall fight in the fields and in the streets, we shall fight in the hills; we
shall never surrender.’’

Churchill, June 4, 1940.4

A vision will ultimately need to be decomposed into specific require-

ments such as measurable objectives with quantified goals. Using

qualifiers, these requirements can, as necessary, be tied by specification

to specific times, locations, components and events of the system.

1 See also the Martin Luther King Jr. vision in the Glossary under Vision.
2 FROM http://www.cs.umb.edu/jfklibrary/j052561.htm, Special Message to the Con-

gress on Urgent National Needs, President John F. Kennedy, delivered in person before

a joint session of Congress, May 25, 1961.
3 This is the best rendition available in consultation with HP – Tom Gilb.
4 The Oxford Dictionary of Quotations, Third Edition with Corrections 1980. Oxford

University Press.

52 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

EXAMPLE Vision 1:

Vision [By Next Year, Software Products]: 30,000 hours mean time between failure
<- CEO in last Annual Report.

‘‘30,000 hours mean time between failure for software products by next year.’’

EXAMPLE Vision 2:

Vision [Within Next Three Years, Key Products]: Order of magnitude reliability
improvement <- Technical Director.

‘‘Order of magnitude reliability improvement in our key products within three years.’’

Once a vision is in place, specific strategies/design ideas can then be

evaluated against it, as potential solutions.

(See Glossary or Chapter 3, ‘Functions,’ for discussion of ‘mission.’)

Basic Requirement Types

Once you have a vision statement providing the overall direction

for a system, you can start capturing the specific requirements for

change.

There are the following basic requirement types:

(These basic requirement types have been already outlined in the intro-
duction to this chapter; here they are discussed in more detail.)

FunctionResource/Cost Performance

Design
(Architecture)System Attributes

(Present or Past)

System Requirements
(Future Attributes)

Vision

Resource Requirement
Performance Requirement =

Objective
Function

Requirement

Design Constraint

Performance
Constraint

Performance
Target =

Goal

Function
Constraint

Function
Target

Resource
Constraint

Resource
Target =
Budget

C
o
n
d
i
t
i
o
n

C
o
n
s
t
r
a
i
n
t

C
o
n
d
i
t
i
o
n

C
o
n
d
i
t
i
o
n

C
o
n
s
t
r
a
i
n
t

C
o
n
d
i
t
i
o
n

Mission

Figure 2.2
Mapping of system attributes to requirements.

Introduction to Requirements 53

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

1. Function Requirement: what a system has to ‘do.’

Function requirements are the functions that are fundamental to

the system, the marketplace or the contract we have undertaken. In

competitive product areas, the functionality defines ‘the market we

are in,’ such as ‘Producing mobile phones.’ All our competitors

probably have identical functionality.

Note, ‘functionality’ does not mean design features and quality; it

means pure basic function. The competitive product differentiators

are the performance levels and costs, not function. A function

requirement is a function that is either declared by the stakeholders

to be required, or is formally recognized by all stakeholders as a

fundamental function of a system.

Function requirements can provide a framework, rather than sim-

ply stating the precise functions required. A function requirement

could specify some set of functions (for example, ‘All Competitor X

functions’). It could also specify functionality that is not required,

(for example, ‘No Games’).

(See Chapter 3 describing Functions and Function Requirements.)

2. Performance Requirement: ‘how good’ a system has to be.

A performance requirement is also known as an objective. All

performance requirements are ‘scalar’ (meaning numerically ‘vari-

able’) in nature and must be specified quantitatively. That is, there

should be a defined scale of measure (Scale) and a specification of

the future required numeric levels for success, failure-avoidance

and survival (Goal, Fail and Survival parameters, respectively) with

relevant conditions (the [time, place, event] qualifiers).

The minimum specification for a ‘performance requirement’ is

that there must be one target (a Goal, Stretch or Wish level) or

one future constraint (a Fail or Survival level). Of course, any

number of useful targets and constraints can be specified.

Finally, benchmark information is needed to complete any

requirement specification. Without such a ‘baseline,’ there is no

way to understand the relative (‘improved’) change required. So a

complete performance requirement specification will include at

least one benchmark (a Past, Record or Trend level).

A performance requirement specification can consist of:

. a set of targets (Goal, Stretch and Wish levels) and

. a set of constraints (Fail and Survival levels).

and is supported by:

. a set of benchmarks (Past, Record and Trend levels).

Note: As a performance requirement is scalar, all these are scalar
parameters.

54 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

There are three kinds of performance requirement:

. quality requirement

. resource saving requirement

. workload capacity requirement.

2.1 Quality Requirement

A quality requirement expresses ‘how well ’ a system will perform.

EXAMPLE Adaptability:

Type: Quality Requirement.

Scale: Time in hours needed to re-configure the defined [Base Configuration] to any
other defined [Target Configuration] using defined [Methods] and defined [Recon-
figuration Staff].

Expert Reconfiguration: Defined As:
{Base Configuration¼Novice Setup,
Target Configuration¼Expert Setup,
Methods¼ Selection of Library Reconfiguration Process,

Reconfiguration Staff¼Qualified Expert}.
=========================== Benchmarks ==========================
Past [Expert Reconfiguration, Version 0.3, Asian Market]: < 1 hour.

======================== Performance Targets =======================
Authority [Goals]: Federal Drug Administration.
Goal [Expert Reconfiguration, Deadline¼Version 1.0]: < 0.5 hours.

Goal [Expert Reconfiguration, Deadline¼Version 2.0]: < 0.1 hours.
=========================== Constraints ===========================
Fail [All USA Products]: < 0.7 hours.

Fail [Expert Reconfiguration, Deadline¼Version 2.0]: < 0.5 hours.
Survival [Expert Reconfiguration, European Market]: < 1 Working Day.
This quality requirement is a measure of how well a system is designed to adapt to
reconfiguration needs in the future.

Note :
. This is a quality requirement even though it has a Scale that involves

measurement of a resource. The reason that this is not a resource saving is
that a specific level of resource saving is not being requested. The resource
measurement is simply a convenient way of capturing the ‘adaptability’ of the
system.

. This is also not a budget (a resource or cost requirement) as the level is not set
up primarily to monitor the expenditure of resource.

These are important distinctions, because as a consequence of them, you will be
forced to react in different ways to the problems arising in meeting these
requirements.

Introduction to Requirements 55

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

2.2 Resource Saving Requirement

A resource saving requirement defines some required level(s) of

saving of a resource compared to the benchmark system(s). How
much resource do we have to save?

EXAMPLE Customer Installation Cost:

Ambition: Reduce the costs to our customers of installing our products on customer
sites.
Type: Resource Saving Requirement.

Scale: Average Total Installation Cost for each Installation of defined [Product] for
all <involved customer departments> within defined [Customer].
Total Installation Cost: Defined As:

{Cost of Education of <customer people>, Cost of Involvement during Planning of
<customer people>, Cost of Shipment of Product, Cost of Involvement during
Installation of <customer people>}.

PP: Past [Last Year, Customer XYZ, Product ABC]: Average <worldwide> Total
Installation Cost for each Installation of Product ABC for Customer XYZ
expressed in $.
Fail [For each Installation, USA, Release 1]: PP.

Goal [For each Installation, USA, Release 1]: 80% of PP.

2.3 Workload Capacity Requirement

A workload capacity requirement defines one specific capacity

of a system for doing work. It specifies an aspect of ‘how much’

work a system or product will be expected to perform in

operation.

Capacity requirements cover such things as transaction speeds,

data storage, maximum transaction volumes and maximum con-

current users.

EXAMPLE Responsiveness:

Ambition: Fast immediate response to any type of user asking for information.
Type: Workload Capacity Requirement.
Scale: Time in seconds from when a defined [User] knows what they want to ask
until the correct necessary information is available to them to carry out a defined

[Task].
Past [User¼ Free Set, Task¼ Inquiry]: Over one minute. Note: Considered unac-
ceptably slow.

Goal [User¼Responsible Administrator, Task¼Any Administration Task]: under 5
seconds? <-Guess TG.
Goal [User¼ Phone User, Task¼Call Setup]: Less than <2 seconds?> <- RB.

Note: Depends on type of call you want to set up.
Example from a client specification (edited).
(See Chapter 4 describing Performance and also Chapter 5 on Scales of Measure.)

56 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

3. Resource Requirement: how much a system can cost

A resource requirement (budget) is a cost (expenditure) require-

ment. A budget is a plan for the use of a finite resource. A budget is

a statement of stakeholder-imposed:

. resource targets (Budget, Stretch and Wish levels)

. resource constraints (Fail and Survival levels).

How much of a limited resource do we plan to use?

Like performance requirements, all resource requirements are ‘sca-

lar’ or variable in nature and must be specified quantitatively.

We are interested in specifying resource requirements for two

closely related purposes. One is so that the design process can

‘design to cost.’ The other purpose is to help us influence the

performance to cost ratio. Ultimately, it is the benefit to cost ratio

of any product, organization or system, which defines its competi-

tiveness in the marketplace. Of course, we must control both

performance and its costs simultaneously. (See Chapter 6 for further
discussion on Resources.)

4. Design Constraint

A design constraint is an explicit and direct restriction regarding

the choice of a design idea (This includes any architecture or

strategy).

EXAMPLE Euro Safety Design [European Models]:

Type: Design Constraint.
Description:
Use designs {X, Y, Z},
Do not use designs {M, N, P}.

Authority: European Safety Law.
Responsible Manager: Corporate Safety Director.
Implementer: Product Line Architect.

5. Condition Constraint: what restrictions are imposed?
Condition constraints are restrictions on the system lifecycle – that

is, on the system design, operation or disposal – other than those

constraints expressed as attribute constraints (that is, other than

those expressed as function constraints, performance constraints,

resource constraints and design constraints). A condition con-

straint may be expressed as a qualifying [time, place, event] con-

dition or by using a Constraint parameter.

All condition constraints are binary (non-scalar). A condition

is either fulfilled or it is not. A condition is either true or

false.

Introduction to Requirements 57

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

There is a potentially very long list of classifications for the con-

dition constraints. For example: Legal Constraint, Political Con-

straint and Cultural Constraint. Classification is not essential, just

useful. They are what they say they are in the specification.

Condition constraints can impact the design choices of a system.

That is, an architect or a systems engineer is free to choose any

design that does not violate the constraint.

Design
Idea 1

Design
Idea 2

Function 1
Recording
Information

Portability

Financial
Cost

Legal
in the UK

Metal
Casing

Requirements

Potential
Design Solutions

Yes

20 g

Yes,
Possible

Yes

5 Dollars

Yes

1 Kg

Yes,
Possible

Yes

2.5 K Dollars

Binary-Function Target

Binary-Design Constraint

Binary-Condition Constraint

Scalar-Performance Target

Scalar-Resource Target

Design
Constraint 1

‘Standard’
Pen

Laptop

[Legal Constraint 1]

Performance 1

Resource 1

Note:

1. The above table includes the binary requirements, which are not normally shown. (Usually, all the design
ideas are informally screened against the binary requirements before drawing up an IE table. An IE table
typically only shows the scalar requirements.)

2. The table is without the scalar baseline information that states the quantitative requirements and bench-
marks, which permit percentage comparisons and improved design idea evaluation.
See Chapter 9, Impact Estimation, for further explanation of IE tables.

Figure 2.3
This is a modified form of an Impact Estimation (IE) table showing an arbitrary set of
requirements and two potential design ideas.

58 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Table 2.1 Planguage Architecture. See the Glossary for further information; this table only
contains the main concepts.

Planguage
Architecture
Parameter Class

Parameter Name,
Type or Content

Use Notes

Specification
Control

Tag
Version
Specification Owner
Status
Quality Level

Administration and
Authorization of
specifications.

Version can be used at
the level of the
individual specification
object, not just at
document level.
Documents are ‘reports’
of views from
specification databases
of specification objects.

Stakeholder
Role (Agent)

– Consumer/Customer/
Product User

– Client/Customer/
Product Business

– Customer Manager
– System Owner

Specifies role played
by individuals or
organizational groups.
Stakeholders can be
internal or external
to a specific system.

Provides information
about the nature of
responsibility and the
relationship to a
specification.

– System Designer
– Specification Author
– Project Manager
– System Tester
– System Maintenance
– Authority
– Sponsor
– Funder
– Champion
– Other

Scope Scope Properties:
– Global/Local
– Generic/Specific
– Internal/External

(Inside or outside a
specified scope)

Defines applicable
specification/system
space. See ‘Condition’

Answers the question of
‘How influential is a
specification/system?’
Defined using [time,
space, event]
conditions.

Condition When – Time
Where – Place
Where – Place by
Stakeholder Role or
Organizational Group
Where – System
Component

Defines scope (space
dimensions) and,
indirectly, priorities.
All these objects
can be complex or
elementary.

Declared using
Qualifiers [. . .] or a
Condition parameter.
A complex object can
be decomposed into a
set of elementary
objects.

If – Event Defines a
system attribute, a system
requirement or a
potential system design.
Requirement
Design Idea

System
Attribute
(Attribute)

Function
Performance:
– Quality
– Resource Saving

‘Function’ includes
‘Mission’ at the
highest function
level.

Often simply referred
to as ‘Attributes’

– Workload Capacity
Resource/Cost
Design/Architecture

Continued

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Table 2.1 Continued

Planguage
Architecture
Parameter Class

Parameter Name,
Type or Content

Use Notes

Requirement 0. Vision
1. Function Requirement
2. Performance

Requirement
(or Objective)

To specify and agree
stakeholder needs

The primary
competitive ideas are
the performance
requirements.

– Quality Requirement
– Resource Saving
– Requirement
– Workload Capacity
– Requirement

3. Resource Requirement
4. Design Constraint
5. Condition Constraint

Attribute Class Benchmark/Baseline
Target
Constraint

Declares/clarifies
intended use of the
specification.

Benchmark/
Baseline

Past
Record
Trend

Systems Analysis.
Compare to
requirements: targets
and constraints.

Analysis data is
integrated with other

Target Goal (for Performance)
Budget (for Resource)
Stretch
Wish

Defines a numeric
value, which is valued
by stakeholders

Must be considered
together with the
[qualifier] information
to be fully interpreted.

Constraint For a Scalar Constraint:
– Fail
– Survival
For a Binary Constraint:
– Constraint
(Usually with an adjective,
such as ‘Function,’ ‘Design’
or ‘Legal’)

Defines a limit for a
numeric value or
certain specific criteria,
which has to be
respected to avoid
failure or worse.

Stakeholders impose
constraints.
Given the same set of
qualifiers, constraints
are of higher priority
than targets.

Standards Policy
Rule
Process
– Entry Condition
– Procedure
– Exit Condition
Interface
Template
Form
Other

Defines Work Process
Standards.

Specification rules
define the concept of
‘defects’ in a
specification. This
enables quality control,
process control and
process improvement.
Either specification
standards or system
standards.
For requirements and
much else.

Specification Requirement Specification
Design Specification
Architecture Specification
IE table
Evo Step Specification
Evo Plan
Systems Architecture
Standards Specification

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

2.4 Rules: Requirement Specification

Tag: Rules.RS.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Base: The rules for generic specification, Rules.GS apply. For the

different types of requirement use also the relevant rules (that is,

Rules.FR, Rules.SR and Rules.SD).

R1: STAKEHOLDERS: There must be a list of the defined stake-

holders and it must span the entire product lifecycle and system space.

For any specific specification, the specific stakeholders can be stated or
defined explicitly. For example, Stakeholders: {A, B, C}.

R2: SCOPE: The scope or ‘system space’ of the requirements must be

defined. All specified qualifiers for requirements must be relevant to

the system space.

Note: Scope states the ‘overall system boundaries’. The scope for specific require-
ments is generally specified using [qualifiers]. See Section 2.7 for discussion of
qualifiers. Use a Scope parameter if you want an explicit definition.

R3: QUALIFIER CONDITIONS: Using qualifiers, requirement spe-

cifications must adequately cover the time period (When: long term

and short term) and the physical scope (Where) for the system and,

must state any known dependency on conditional states or events (If).

R4: RATIONALE: The rationale or justification for a requirement and

for specific aspects of it should be given. Use the Rationale parameter.

R5: DEPENDENCIES: Any conditions or circumstances, which a

requirement depends on for relevance or authority, must be specified.

(Use the ‘Dependency’ parameter, or any other relevant means.)

R6: INTERNAL LINKS: All specified requirements can be grouped

into relevant hierarchical levels of requirements. Linkage to related

requirements should be explicit and complete.

For example, use Planguage specifications such as:

. Hierarchical tags (for example, ‘System.Subsystem.Component’).

. ‘Consists Of’ or ‘Includes’ to link to lower hierarchical levels.

. ‘Is Part Of’ to link to higher hierarchical levels.

. ‘Supports’ and ‘Is Supported By’ to explicitly specify any intended direct links.

. ‘Impacts’ and ‘Is Impacted By’ to explicitly specify impacts including any
side effects (Impact Estimation table linkage).

Introduction to Requirements 61

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

R7: EXTERNAL LINKS: Requirements which are related to any

level of product line requirements, corporate standards or policies, or

anything outside of the specific system documentation, must always

explicitly indicate that relationship by a suitable specification (By use of

parameters, such as Supports and/or Impacts). The intended readership

should not have to know or guess such relationships (for example, shared

interfaces, shared objectives and use of generic templates).

R8: TESTABLE: Each requirement must be specified so that it is

possible to define an unambiguous test, to prove that it is actually

implemented.

A specific test may be specified or outlined immediately in the Meter or
Test statement. However, any specific tests will usually be designed in
detail later. The key idea is that all requirements must be clear enough to
be testable by some means.

R9: DESIGN SEPARATION: Only design ideas that are intentionally

‘constraints’ (Type: Design Constraint) are specified in the requirements.

Any other design ideas are specified separately (Type: Design Idea). All
the design ideas specified as requirements should be explicitly identified as
‘design constraints’ (that is, ‘design ideas’ which are ‘constraints’).

2.5 Process Description: Requirement
Specification

Requirement specification is carried out throughout a project’s life-

cycle. It occurs when specifying the initial overall top-level require-

ments and, subsequently, during each evolutionary result cycle.

(Within each evolutionary result cycle, the top-level requirements

are reviewed, and updated if necessary, and the subset of requirements

relevant to the specific step is specified in detail.)

A generalized requirement specification process is given in this section.

Specifically, it does not include any detailed review or updating

considerations.

Process: Requirement Specification

Tag: Process.RS.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

62 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Entry Conditions

E1: The Generic Entry Conditions apply. The Specification Quality

Control (SQC) entry condition applies to any source information,

such as contracts and marketing plans.

E2: Key stakeholders should be available for questions and reviews to

resolve any uncertainty about sources and exact specification.

Procedure

P1: Define the system scope and the overall scope of the requirements.

P2: Identify relevant (critical and profitable) stakeholders.

P3: Determine the requirements of each type of stakeholder. Ensure

all specification statements are source-referenced.

P4: Categorize requirements by type (the major requirement types are

function requirement, performance requirement, resource require-

ment, design constraint and condition constraint).

P5: Specify Function Requirements (Process.FR. See Chapter 3).

P6: Specify Performance Requirements (Process.PR. See Chapter 4) includ-

ing identifying or creating a Scale of Measure (Process.SD. See Chapter 5).

P7: Specify Resource Requirements (Process RR. See Chapter 6).

P8: Identify and question any design constraints and condition con-

straints. (Are they real or was something else intended?) Ensure the

necessary design and condition constraints are specified.

P9: Specify all known significant relationships of the requirements to

any other relevant requirement specifications (external or internal to

the system). You need to identify where there may be overlap or conflict or
double accounting over benefits. There may even be synergy or a chance to
‘subcontract’ parts of the system development.

Use Planguage terms such as {Source, Dependency, Assumptions, Author-
ity, Impacts, Risks, Is Impacted By}.

P10: Get stakeholders to approve the written requirement specifica-

tions that specifically affect them.

P11: Carry out Specification Quality Control (SQC) on the require-

ment specification.5 Obtain management review approval.

5 For the majority of the procedures in this book, the exit and entry conditions serve to

remind you about the need for quality control: explicit reference to quality control

within the main procedure is usually omitted.

Introduction to Requirements 63

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Use sampling to obtain information about the likely number of remaining
major defects/page. An appropriate default, general exit condition is a max-
imum of one remaining major defect/page (300 non-commentary words).

Note: This is an appropriate point in this procedure to carry out quality
control. However, don’t let this prevent you from carrying out quality
control at other times. For example, it is far better you find out that there
is a problem after writing three pages than after 30 pages.

Exit Conditions

X1: The Generic Exit Conditions apply. The requirement specifica-

tion must have exited SQC.

X2: There is management review approval of the requirement speci-

fication.

Note: This exit does not mean that the requirements can or should be

‘frozen’ and final. They are merely ready for continuous refinement,

detailing, correction and supplements, which will result primarily

from feedback from early and frequent evolutionary delivery steps.

2.6 Principles: Requirement Specification

1. The Principle of ‘Results Beat All’

The top strategy is ‘getting the stakeholder results’.

Meeting requirements is more fundamental than any other process or
principle.

2. The Principle of ‘Goodies Control beats Bean Counting’

Focus on getting the Goodies. Their costs will be forgiven.

The main point of any project, or change effort, is to improve stake-
holder benefits. The benefits must be at least as well-controlled as the
resources needed to get them. Otherwise the benefits will lose out, at the
hands of the always limited, clearly budgeted resources.

3. The Principle of ‘Reasonable Balance’

Reach for dreams, but don’t let one of them destroy all the others.

You cannot require an arbitrary set of requirements. There must be
balance between performance requirement levels, resources available
and available design technology.

4. The Principle of ‘Unknowable Complexity’

You must feed a lion to find out how hungry it is.

64 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

You cannot have correct knowledge of all the interesting requirements’
levels for a large and complex system in advance. You cannot know which
requirements are needed, and which are realistic, until you have some
practical experience with a real system with real people using it.

5. The Principle of ‘Specification Entropy’

Even gourmet decays.

Any requirement or design specification, once made, will become
gradually less valid, as the world, for which they were intended, will
change over time.

6. The Principle of ‘Critical Values’

If you don’t find the critical requirements, they will find you!

You must identify all potentially requirements for all stakeholders or
you risk losing profitability, or even system failure.

7. The Principle of ‘How Good’ and ‘How Much’ before ‘How’

All performance requirements and resource requirements must be

stated before any design idea can be fully and properly evaluated.

8. The Principle of ‘Gap Priorities’

The least fulfilled requirement attributes become our current

priorities.

By calculating the ‘gap’ between current real levels of performance deliv-
ered and the required levels, we can assume that the biggest unfilled ‘gap’
in meeting our targets is our current greatest priority. For example, you
cannot know now if you will be hungrier, thirstier or more tired a week
from now. But wait a week and you will know which need has priority.

9. The Principle of ‘Stop the World, I Want to get Off’

There is no final set of real-world requirements; freezing the

specifications will make your real problems worse than any pro-

blems caused by updating them.

10. The Principle of ‘Eternal Projects’

Survival is a lifetime project.,

The process of delivery of results has no end, if you are in competition
for survival.6

2.7 Additional Ideas

Using Qualifiers to Specify Conditions

Planguage is able to capture a wide variety of situations. This cap-

ability allows us to target specific parts of a system; for example,

6 Based on the wisdom of W. Edwards Deming.

Introduction to Requirements 65

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

aiming to deliver to our most critical stakeholders and customers

early, without waiting for the entire systems effort to complete. The

major tool we use to give this flexibility and power is the ‘qualifier’

statement.

Qualifier Definition

A qualifier specifies any useful set of conditions that must be fulfilled,

in order for the specification to become effective (valid as a require-

ment, a design or other specification). The qualifiers usually specify

when, where and under what special conditions a specification is valid.

There are three main classes of conditions [time, place, event], in

other words, [when, where, if]. They are specified as follows:

. time’ or ‘when’ states a time concept.

o This can be a date. The date can be past, present or future.
o It can also be any relative notion of time, such as [After Release 1].
o It can be any multiple notions of time. For example, [After April

1, Except Sunday].

. place’ or ‘where’ states a notion of ‘placement’.

o ‘Where’ stated as a ‘physical location’ has a wide range of interpreta-

tion; it can be any component part of a system and/or any physical
location where the system operates or has operated or will operate.

o For example: [Market¼European Union],

[Use Area¼At School],

[System Module¼ {Module A, Module B,

Module F}].
o The ‘where’ location can even be stated indirectly by reference

to any aspect of the system that implies certain areas. For

example, ‘where’ can be captured by naming the stakeholders

involved (by user roles, or by their relationship to specific

locations), or tasks.
o For example, [Stakeholder¼ {First Time User, Pupil}],

[Users¼Account Managers],

[Users¼Head Office Staff],

[Task¼Address Entry].

. ‘event’ or ‘if’ states any special circumstances that have to be in a ‘true’

state for the specification to apply (For example, [If Contra-

ct23¼ Signed]).

(Aside: This final category of ‘event’/‘if’ is really a somewhat

simplified concept. The main aspect to consider is capturing

any ‘special circumstances/conditions.’ If you think about it, all

conditions, including time and place are actually ‘if’ conditions.)

66 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Qualifiers are defined within a Scale definition or within an individual

Planguage statement on a ‘need to know’ basis.

Qualifiers defined within a Scale definition are known as ‘Scale

Qualifiers.’ When using a Scale, all the scale qualifiers have to each

be assigned a ‘Scale Variable.’ A scale variable can be assigned by

default value, by explicit declaration or by implied inheritance.

EXAMPLE Training Time:

Scale: Average time in minutes for defined [User: default¼ Student] to complete
defined [Task].

Goal [User¼ Year 1 Student, Task¼ Learn to Use Library Catalogue,
School¼G&L]: 10.
Referring to potential qualifiers in a Scale definition using Scale Variables. User and Task
are defined within the Scale and are Scale Qualifiers. ‘Student’ is a default Scale Variable
for User. School is added in the Goal (performance) statement as an additional qualifier.

Qualifiers are usually stated within square brackets. However, there is

also a Qualifier parameter.

EXAMPLE Goal [Case Home]: 99.5%, [Case Euro]: 99.6%.

Source: Product Planning.
Project Defaults: Qualifier [Years End, Consumer Goods, If Fierce Competition on

Price].
Case Home: Qualifier [Home Market, Project Defaults].
Case Euro: Qualifier [Euro Market, Project Defaults].

A qualifier statement can be defined independently, for example in order to reuse it, or to
have a short summary reference to it elsewhere.

There is no sequence requirement for the conditions. There can be

multiple instances of any one class of condition. For example:

[Country¼ {USA, UK, NO}].

The qualifier content should either be self-evident for purpose (For

example: [End of this Year, USA, If No War] or make use of add-

itional explicit qualifier parameters as follows: [Qualifier Name¼
Qualifier ‘Value’].

EXAMPLE Goal [Deadline¼End of Next Year, Country¼UK, State¼ If No War]: 55%.

Qualifiers can be present in any requirement, design idea, or Evo step

specification. Most Planguage parameters can use qualifiers: certainly

all benchmarks, targets and constraints would be expected to have

qualifiers present.

In fact, without adequate qualifiers, a specification is too general. For

example, for a requirement to really exist, time and place conditions

must be set.

Introduction to Requirements 67

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Qualifiers can apply ‘by default’ from other system specifications. This is

called ‘inheritance’. Inheritance occurs from more global specifications

and/or from higher hierarchical specification levels. In such situations,

there exist no ‘more local’ qualifiers that override the inherited qualifiers.

Qualifiers and System Space/Scope

Scope is the overall ‘space’ for a system. The scope for specific

requirements is generally specified using [qualifiers]. Alternatively,

you can use the Scope parameter if you want to state a set of scope

boundaries as a separate reusable statement.

Constraints may help establish the limits of the system scope (bound-

aries). Condition constraints can be used to specify any specific con-

ditions that are limits to the scope of a system.

The Difference between Qualifier Conditions and Condition
Constraints

Qualifier conditions are not usually constraints. Any specification (such

as requirement, design, implementation planning or test planning)

can contain qualifier conditions of any kind. Qualifier conditions

must all be ‘true’ for the related specification to be made effective.

The effective specification may or may not itself be a constraint

specification. (A constraint sets a limit because some kind of ‘pain’

will be experienced if the constraint is not met/conformed to).

EXAMPLE L [X, Y]: Type: Condition Constraint: The system must be legal in area E.

G [M, N]: Type: Function Requirement: Children’s Games.
L is a condition constraint, which is activated only when qualifier condition X and Y are
both true.
G is NOT a condition constraint. It is a function requirement that is a valid requirement
when both conditions M and N are true.

Qualifiers and Evo Steps

One of the many uses of qualifiers is in helping us to ‘divide up’ both

requirements and design ideas into ‘chunks’ for implementation pur-

poses. All qualifiers specified in requirements help identify potential

‘natural boundaries’ within the system that might enable sub-setting

of the system to support selection and delivery of Evo steps.

Deadlines provide a set of time sequences, and ‘place’ qualifiers give a

set of locations that can be exploited in planning the evolution of the

system. Even an event condition can give us the possibility of further

differentiation for selection of possible Evo steps.

68 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Additional Ideas Concerning Constraints

Constraints are not the main reason our project exists and they are

certainly not what we are investing in. However, constraints are

essential requirements as they provide the information about the

design limitations, which we must adhere to: the absolute limits for

performance and resource levels and, the absolute restrictions on what

we can and can’t do.

Constraints are set as a result of many factors: corporate policy,

national laws, competitive forces and limited project resources, to

name a few of the many areas that supply us with constraints. The

penalty for us if we do not identify, specify and respect these con-

straints is some degree of partial, to total, failure to deliver the

stakeholder requirements. Constraints are not ‘fun,’ but try to think

of them as presenting interesting engineering challenges.

Adherence to Constraints

When designing a system, the list of constraints needs to be treated as

a checklist against which every single potential design idea has to be

checked for possible violation. Remember also to check any sets of

design ideas and, the potential total design (if it is outlined) against

the constraints. It could be that collectively a set of design ideas

violates some constraint(s). For example, by exceeding a resource

constraint. Any potential design idea that violates any constraint

might be rejected for this reason. But, not for sure! It depends on

the relative priority of the requirements, which the design idea is

trying to satisfy, as well as the options for alternative design ideas.

In some cases, the constraint itself may have to ‘back down’. It

would be good practice to specify what has happened in the design

specification.

EXAMPLE Note: This design conflicts with the following constraints {CA, CB}, but we have

decided to make an exception, as no other better alternative has been found <- TG.
Authority: Chief Architect.

One point to bear in mind is that constraints always result from the

choices of stakeholders. What might be a ‘given’ constraint to you is

likely to be the free choice of another stakeholder. If you decide there

is an issue with a constraint or that a conflict exists, then the first thing

to consider is the authority that ‘set’ the constraint. You can then

determine how to treat the issue to achieve resolution.

Remember, constraints have cost implications as well: the addition,

alteration or removal of a constraint can have significant impact on

the implementation or operational system costs.

Introduction to Requirements 69

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

EXAMPLE C1: European Community Suppliers of <system components> must be used, where

possible.
Type: Political Constraint.

EXAMPLE C2: The system must be legal in the country of operation.

Type: Legal Constraint.

EXAMPLE C3: It cannot cost more than ‘Y’ to develop <the system>.

Type: Resource Constraint [Resource¼ Financial, Lifecycle Stage¼Development].

EXAMPLE C4: It cannot cost more than ‘X’ to produce, distribute or support <the system>.

Type: Resource Constraint [Resource¼ Financial, Lifecycle Stage¼ Post Development].

Constraint Viewpoints

Constraints can be classified from several viewpoints (see Figure 2.4).

If you consider the system lifecycle viewpoint, two specific categories

Constraint Specification
Structure

System
Lifecycle Other

Stakeholder
Authority

Constraint Viewpoints

Scalar Binary

P
er

fo
rm

an
ce

 C
on

st
ra

in
t

R
es

ou
rc

e
C

on
st

ra
in

t

F
un

ct
io

n
C

on
st

ra
in

t

E
ng

in
ee

rin
g

P
ro

ce
ss

O
pe

ra
tio

na
l S

ys
te

m

O
th

er

C
on

di
tio

n
C

on
st

ra
in

t

O
th

er

C
ou

nt
ry

 L
eg

is
la

tio
n

C
ha

irm
an

 /C
E

O

Obey UK Environmental Emission Laws

Meet CO Emission Levels

Use Language X
for all programming

D
es

ig
n

C
on

st
ra

in
t

Figure 2.4
Constraint viewpoints: constraints are either scalar or binary. They can be categorized
from several viewpoints.

70 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

of interest could be ‘System Operational Constraints’ and ‘Engineer-

ing Process Constraints.’ System operational constraints apply across

the entire operational system, while engineering process constraints

only restrict the engineering process itself (as opposed to the system

being engineered). A constraint such as ‘Meet carbon monoxide

emission levels’ is simultaneously a system operational constraint, a

performance constraint and a legal constraint.

2.8 Further Example/Case Study: A Proposal to the
Board for $60 Million

Here is the original plan (edited to conceal identities) presented to the

Board of Directors of an engineering organization, requesting $60

million for CAD/CAM equipment. It was written by the Engineering

Director for Quality and Productivity. The answer was ‘‘No.’’

A special effort is underway to improve the timeliness of Engineering
Drawings. An additional special effort is needed to significantly
improve drawing quality. This Board establishes an Engineering
Quality Work Group (EQWG) to lead Engineering to a breakthrough
level of quality for the future. To be competitive, our company must
greatly improve productivity. Engineering should make major con-
tributions to the improvement. The simplest is to reduce drawing
errors, which result in the AIR (After Initial Release) change traffic
that slows down the efficiency of the manufacturing and procure-
ment process. Bigger challenges are to help make CAD/CAM a
universal way of doing business within the company, effective use
of group classification technology, and teamwork with Manufactur-
ing and suppliers to develop and implement truly innovative design
concepts that lead to quality products at lower cost. The EQWG is
expected to develop ‘end state’ concepts and implementation
plans for changes of organization, operation, procedures, stand-
ards and design concepts to guide our future growth. The target
of the EQWG is breakthrough in performance, not just ‘work harder’.
The group will phase their conceptualizing and recommendations
to be effective in the long term and to influence the large number
of drawings now being produced by Group 1 and Group 2 design
teams.

My critical review of the above draft:

1. It does not have a clear ‘structure’, which would enable the reader

to understand it.

2. The objectives (for example, cost savings) are not clearly stated (no

numeric targets, when? scope?).

Introduction to Requirements 71

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

3. Undefended and unjustified assumptions are made, prejudicing

the work of the group.

4. No reference to any of their own past, present or competitive

efforts in this area (no benchmarks).

The first thing I do when presented with a document such as this is to go

through and mark the ideas concerning performance requirements – the

objectives (bold and underlined) and the ideas concerning strategies or

solutions (italics and underlined). I also underline implied requirements.

(Hint: You can use underlining and the letters ‘O’ and ‘S’ on a paper copy
of a document.)

A special effort is underway to improve the timeliness of Engineering
Drawings. An additional special effort is needed to significantly
improve drawing quality. This Board establishes an Engineering Qual-
ity Work Group (EQWG) to lead Engineering to a breakthrough level
of quality for the future. To becompetitive, our companymust greatly
improve productivity. Engineering should make major contributions
to the improvement. The simplest is to reduce drawing errors, which
result in the AIR (After Initial Release) change traffic that slows down
the efficiency of the manufacturing and procurement process. Big-
ger challenges are to helpmakeCAD/CAMa universal way of doing
business within the company, effective use of group classification
technology, and teamwork with Manufacturing and suppliers to
develop and implement truly innovative design concepts that lead
to quality products at lower cost. The EQWG is expected to develop
‘end state’ concepts and implementation plans for changes of orga-
nization, operation, procedures, standards and design concepts to
guide our future growth. The target of the EQWG is breakthrough in
performance not just ‘work harder’. The group will phase their con-
ceptualizing and recommendations to be effective in the long term
and to influence the large number of drawings now being produced
by Group 1 and Group 2 design teams.

A framework for the requirements can then be drawn up for further

work. Fuzzy brackets denote where more information is required.

Scope:

Time:

<short term>

<long term>

Place [Organizational Group]:

Engineering Organization: Research and Development

Group 1 Design Team

Group 2 Design Team

Manufacturing

Procurement

Suppliers

72 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Performance Requirements:

Ambition: <competitive>þ<breakthrough level of quality>.

Reduce Product Cost.

Improve Productivity [Engineering].

Improve timeliness of <engineering drawings>.

Improve <drawing quality>.

Reduce <drawing errors>.

Others.

Reduce <Engineering Process> timescales (‘time to market’).

Improve <Efficiency> [Manufacturing, Procurement].

Achieve <Growth>.

Others

This is just the start – there are no benchmarks or numeric values

specified! Note also, that these are just initial lists; they are not in

Planguage format. (See later chapters for discussion on how to specify

such requirements.)

Some of the suggested potential design ideas are listed below. These

design ideas are not requirements unless they are specific design

constraints. Further work is required to establish how they should

be viewed.

Potential Design Ideas:

. Have a team responsible for improvement – EQWG

. <Innovative> change of organizational, operation, procedures,

standards and design concepts
. Make CAD/CAM a universal way of doing business
. <Effective> use of group classification technology
. <Effective> teamwork with Manufacturing
. <Effective> teamwork with Suppliers

Below is a clearer way to express the same ideas (but not necessarily the

best way), which begins to address the issues of numeric values and

evolutionary progress towards solutions. Some values are deliberately

‘set up’ with the aim that any wildly incorrect values will be

challenged.

Ambition: As our primary initial task, we have targeted a significant
reduction in the drawing errors, which are not due to customer
change requests. When we have shown we can achieve that,
other tasks await us.
The long-range objective is a reduction of drawing errors, which
require After Initial Release changes. The aim is for errors to be
dropped by at least 20% each year, from the levels current at the
beginning of the year. Results are expected from the end of

Introduction to Requirements 73

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

November. Results should be designed to come in at the rate of
10% of annual target each month (that is, a 2% reduction of draw-
ing errors each month). When results are not achieved, the EQWG
will analyze the attempt and advise the Programs on possible
improvements to achieve results.
Plan: The first month is November. An attempt to get a 2% reduction
by the end of that month is the implied target.
Strategies: The Group 1 and the Group 2 design teams will start in
parallel and will have a friendly competition for reduction of the
drawing errors.
The design teams are expected to find their own detailed solutions
and strategies.
Funding: Up to $500,000 is available immediately for funding any
activity necessary for achievement of this target {experiments, train-
ing, consultants, research trips}. In the long run, the project should
be self-funding through savings.
Responsibility: The Program Directors (and their staff) are responsible
for achieving targets. The EQWG is responsible for supporting theactiv-
ity, by dispensing the funding, reviewing progress and assisting the
responsible programmanagers with any resources they may need.
Method: The method for planning outlined in the ‘Proposed stan-
dard for EQWG Organization’ will be the basis for planning. It will be
modified as required by the EQWG.

Note: As the above was intended for presentation to management, it was
formatted as ordinary text (without identifying user-defined terms).

See more about this case study in Section 3.2.

Bill of Rights

. You have a right to know precisely what is expected of you.

. You have a right to clarify things with colleagues, anywhere in the

organization.
. You have a right to initiate clearer definitions of objectives and strate-

gies.
. You have a right to get objectives presented in measurable, quantified

formats.
. You have a right to change your objectives and strategies, for better

performance.
. You have a right to try out new ideas for improving communication.
. You have a right to fail when trying, but must kill your failures quickly.
. You have a right to challenge constructively higher-level objectives and

strategies.
. You have a right to be judged objectively on your performance against

measurable objectives.
. You have a right to offer constructive help to colleagues to improve

communication.

Original version in (Gilb 1988 Page 23)

Figure 2.5
The author suggested these ‘rights’ for a multinational client. Of course it is a sneaky
way to tell people what their ‘duties’ are!

74 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

2.9 Diagrams/Icons: Requirement Specification

PFR

D

S

C C

F is a function attribute. R is resource attribute, shown as an input attribute to F.
P is a performance attribute, shown as an output attribute to F.
D is a design attribute.
C represents a condition attribute (the two ‘brackets’ combined).
The set {R, F, P, D, C} make up a system, S.

Figure 2.6
A simple system model showing the main attributes for a system, S.

F1

F2

FRS PR

RS.A

RS.B

PF

PR.C

PR.B

PR.A

PR.1

PR.2

RS.1

RS.2

RR

DS1

DS1.2DS1.1

D DS2

S1

C1

C2

C1

C2

Notes:
F1 and F2 are sub-functions of function attribute, F.
RS is a complex cost. RS.1 and RS.2 are the corresponding resource attributes of their respective sub-functions
F1 and F2. They can be referred to like this, F1.RS.1 or F.F2.RS.2.
RR is another resource attribute of F.
PR is a performance attribute of F.
F1.PR.1 and F2.PR.2 are the corresponding performance attributes at the sub-function level. PR.A, PR.B and
PR.C are performance attributes (each has a separate scale definition). As a set, PR.A, PR.B and PR.C define
the meaning of PR, a complex performance requirement.
PF is another performance attribute of F.
D is a design attribute of the system, S1. D has sub-components of DS1 and DS2.
C1 and C2 are condition attributes.

Figure 2.7
A more complex system model for a system, S1.

Introduction to Requirements 75

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Function G

Function E

Design Idea P

Design Idea D

Design Idea R

Design W

Design Q Design S

Resource A Performance X

Resource C
Resource B

Function F

Performance Y

Performance Z

Performance T

C
onsists O

f*

Im
pa

ct
s

Is Impacted By

Is
 P

ar
t O

f*

Supports

Supports

Im
pa

ct
s

Im
pa

ct
s

Im
pa

ct
s

Is Im
pacted B

y

Is Im
pacted B

y

Includes*

Supports

Note: * Hierarchical relationships are usually represented by lines rather than arrows.
 Arrows are used here to explicitly show the direction of the relationship.

Notes:
Simplified icons are shown for resource and performance (in ‘true’ icons, the block arrows should each be linked
to an oval, representing function).
The ‘linking’ terms include: Consists Of, Includes, Is Part Of, Impacts, Is Impacted By, Supports and Is
Supported By. Note: Not all relationships are shown.

Hierarchical Links:
Performance X Consists Of {Performance Z,
Performance T Consists Of Performance Y}.
Design W Consists Of {Design Q, Design S}.

Resource A Includes Resource B.
Function E Includes Function G.
Design W Includes Design Q.
Design Idea D Includes Design Idea R.
Performance X Includes Performance T.

Resource B Is Part Of Resource A.
Performance Z Is Part Of Performance X.
Function F Is Part Of Function E.
Design Idea R Is Part Of Design Idea D.

IE Table Links:
Design Idea D Impacts Design Q.
Design Idea D Impacts Resource C.
Design S Impacts Performance X.
Design Idea D Impacts Performance Z.

Resource A Is Impacted By Design Q.
Performance Z Is Impacted By Design Idea D.
Resource C Is Impacted By Design Idea D.

Specific Attribute Links:
Resource A Supports Function E.
Function E Supports Performance X.
Resource A Supports performance X.

Figure 2.8
Diagram showing how to express the relationships amongst attributes, between attribute
and design idea, and amongst design ideas.

76 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

Requirement Specification Template (A Summary Template)

Tag: <Tag name for the system>.

Type: System.

=========================== Basic Information ==========================

Version: <Date or other version number>.

Status: <{Draft, SQC Exited, Approved, Rejected}>.

Quality Level: <Maximum remaining major defects/page, sample size, date>.

Owner: <Role/e-mail/name of the person responsible for changes and updates>.

Stakeholders: <Name any stakeholders (other than the Owner) with an interest in the

system>.

Gist: <A brief description of the system>.

Description: <A full description of the system>.

Vision: <The overall aims and direction for the system>.

============================= Relationships ============================

Consists Of: Sub-System: <Tags for the immediate hierarchical sub-systems, if any, com-

prising this system>.

Linked To: <Other systems or programs that this system interfaces with>.

========================= Function Requirements ========================

Mission: <Mission statement or tag of the mission statement>.

Function Requirement:

<{Function Target, Function Constraint}>: <State tags of the function requirements>.

Note: 1. See Function Specification Template. 2. By default, ‘Function Requirement’ means

‘Function Target’.

======================= Performance Requirements ======================

Performance Requirement:

<{Quality, Resource Saving, Workload Capacity}>: <State tags of the performance

requirements>.

Note: See Scalar Requirement Template.

========================= Resource Requirements ========================

Resource Requirement:

<{Financial Resource, Time Resource, Headcount Resource, others}>: <State tags of

the resource requirements>.

Note: See Scalar Requirement Template.

=========================== Design Constraints ==========================

Design Constraint: <State tags of any relevant design constraints>.

Note: See Design Specification Template.

========================= Condition Constraints =========================

Condition Constraint: <State tags of any relevant condition constraints or specify a list of

condition constraints>.

====================== Priority and Risk Management =====================

Rationale: <What are the reasons supporting these requirements? >.

Value: <State the overall stakeholder value associated with these requirements>.

Assumptions: <Any assumptions that have been made>.

Dependencies: <Using text or tags, name any major system dependencies>.

Risks:<List or refer to tags of any major risks that could cause delay or negative impacts to the

achieving the requirements>.

Priority: <Are there any known overall priority requirements? >.

Issues: <Unresolved concerns or problems in the specification or the system>.

================== Evolutionary Project Management Plan ==================

Evo Plan: <State the tag of the Evo Plan>.

========================= Potential Design Ideas ========================

Design Ideas: <State tags of any suggested design ideas for this system, which are not in the

Evo Plan>.

Figure 2.9
Requirement specification template. This is a summary template giving an overview of the
requirements.

Introduction to Requirements 77

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

2.10 Summary: Requirement Specification

This chapter has given an overview of requirement specification and

introduced the different requirement types: function requirement,

performance requirement, resource requirement, design constraint

and condition constraint. Subsequent chapters (Chapters 3 to 6) will

describe these requirement types in greater detail.

Planguage helps with requirement specification:

. by helping you to focus on the most critical requirements

. by demanding numeric definition for variable (scalar) requirements

. by making sure you obtain and specify benchmark levels for per-

formance and resource attributes
. by encouraging specification of constraints.

As a result, the overall communication of the requirements between

business management and systems engineering becomes much more

precise:

. Technical staff of all levels have a clearer practical understanding of

what they must deliver.
. Management can better understand and control project progress.

There are also two further, significant benefits from Planguage

requirement specification:

. It actively assists the system design process. The numeric values of

the benchmark and target requirements are direct inputs into

Impact Estimation, which is used to quantitatively assess design

ideas (see Chapters 7 and 9).
. It caters for evolutionary system engineering methods as it supports

dynamic requirements and, it enables rapid, numeric tracking of

progress. There is the ability to clearly specify how critical require-

ment levels should change over time and any changes to these

numeric values (by project progress or change in requirement) are

clearly visible to all. There is also the ability by specifying [time,

place, event] conditions to readily communicate sub-division of a

system.

Clear, specified requirements are at the heart of systems engineer-
ing. Planguage is a flexible tool to help you communicate require-
ments better.

78 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 24.6.2005
9:41AM

“Would you tell
me please,
which way I
ought to go
from here?”
 “That depends
 a good deal
 on where you
 want to get to,”
 said the cat.
 “I don’t much
 care where --,”
 said Alice.
 “Then it
 doesn’t matter
 which way
 you go,” said
 the cat.

 Lewis Carroll

Figure 2.10
Alice and the Cheshire Cat. Illustration by John Tenniel, wood-engraving by Thomas
Dalziel. From Chapter 6, Alice in Wonderland by Lewis Carroll.

Introduction to Requirements 79

