
//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Chapter

4

PERFORMANCE
How Good?

GLOSSARY CONCEPTS

Performance

Quality

Resource Saving

Workload Capacity

Scale

Meter

Benchmark

Past

Record

Trend

Target

Goal/Budget

Stretch

Wish

Constraint

Fail

Survival

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

4.1 Introduction

Performance: Quality, Resource Savings
and Workload Capacity

Performance describes the system benefits: how good the system is and

how it affects the external world. Performance attributes state the

actual and/or potential benefits and effects experienced by stake-

holders in their environments.

Performance attributes are the output attributes; they state the effec-

tiveness of a system. By contrast, the input (or ‘fuel’) attributes are the

resources/costs of developing and/or maintaining a system that exhibits

Consider the Performance of :

A flower

• fragrance
 • attractiveness
 • pollen quantity
 • toxicity
 • bloom frequency

A person

• balance
 • intelligence
 • courtesy
 • helpfulness

A car

• comfort
 • safety
 • speed
 • capacity

Figure 4.1
Some examples of performance concepts.

Performance 111

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

those performance attributes. The performance to cost ratio for a system

is a measure of its efficiency.

Performance attributes are scalar. As discussed in Chapter 2, there are

three basic types:

. Quality: The quality attributes specify how well the system per-

forms. The term ‘quality’ is used here in the ordinary widest sense of

the word. It is by no means limited to the narrow ‘defect free’

notion that some people mean when using it. How many qualities

can you list of a great car, a dream house, an excellent employee, a

great personal computer or a good wine? We include all such ideas

in our broad concept of quality.
. Resource Savings: These specify how much resource is required to be

saved compared to the resource usage/consumption by some reference

or benchmark system. Achieving specific savings is frequently a driver

for system development; for example, cutting the financial cost of

carrying out transactions or reducing the time taken to carry out a task.

Note, for this performance type, the saving of resource is the prime

requirement, it is not simply a fortuitous by-product of the system

improvements; it is what a stakeholder has specifically demanded.
. Workload Capacity: These specify how much work the system can

perform: the capacity of the system. For example, the average speed

for completing certain tasks, the capacity to store information and

the maximum number of users supported.

Performance requirements must express quantitatively the stake-

holders’ requirements. I have come to believe, through experience,

that all the performance attributes we want to control in real systems

are capable of being expressed measurably. I find it intolerable that

critical performance ideas are expressed in mere non-quantified words.

Expressions like ‘‘vastly increased productivity’’ annoy me! Not one of

those three words has a precise and agreed unambiguous interpreta-

tion. Yet, I have consistently encountered a world in multinational

high-tech companies, amongst educated, intelligent and experienced

people, where such vague expressions of performance, especially of

PerformanceFunctionResource

Figure 4.2
A simple system representation. It consists of a function, and its performance and resource
(cost) attributes.

112 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

quality, are tolerated; such expressions seem not even recognized as

being dangerous and capable of improvement.

Performance attributes are more than a collection of names like

‘reliability,’ ‘user friendliness,’ ‘innovation,’ ‘transaction time’ and

‘cost saving.’ Each performance attribute needs to be precisely defined

by a set of numeric, measurable, testable specifications. Each perfor-

mance attribute specification will include different specified levels for

different conditions [time, place and event]. Unless there is clear

communication in terms of numeric requirements, there is every

chance of the real requirements not being met; and we have no clear

indication of the criteria for success and failure.

Sometimes, it seems difficult to identify satisfactory scales of measure.

Often, the only ones that can be found are indirect, imprecise and have

other problems associated with them. From my point of view, these

problems can be tolerated. The specific scales of measure, and meters

for measuring, can always be worked on and improved over time. In all

cases, an attempt at quantified specification is better than vague words.

Over the years, I have found people immediately receptive to the idea

that they should quantify all their performance ideas. The only ques-

tion has been ‘‘How?’’ This chapter begins to answer this question. It

describes the main Planguage parameters you can use to specify

quantified performance attributes.

4.2 Practical Example: Performance
Requirements

Let us start with an example of how to quantify a typical performance

requirement.

‘‘Increased ease of service’’ is a term I found in a set of design specifications

for a mobile phone handset. It was not defined further. It sounded like a

nice thing to have. The telecommunications supplier’s culture allowed it

to go unchallenged. In fact, in the few dozen pages of specification, there

were actually 10 distinct design ideas, each one with a bullet-point

claiming it would contribute to ‘‘better serviceability’’ for the new phone.

I asked my client if they had any quantified performance requirement

specification for the ‘‘increased ease of service’’ for the phone. They

had not, so we agreed to explore some possible definitions. We soon

discovered that ‘Serviceability’ for the mobile phone had numerous

elementary components; it was a complex objective.

Here is an extract of what we did. It was a three-step process.

Performance 113

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Step 1

We identified the different components of Serviceability and gave

each of them a name:

Serviceability: ‘‘is comprised of the following elementary and complex

objectives.’’

Type: Quality Requirement:

{Repair,

Enhancement,

Fashion Changes,

Installation,

Reconfiguration}.

Step 2

We described each of these objectives by defining and agreeing a Gist

(‘Gist’ meaning the essence or main point):

Repair: Gist: Speed of repair of faults under given conditions.

Enhancement: Gist: Speed of introducing hardware or software

enhancements.

Fashion Changes: Gist: Ease of customer varying fashion attachments.

Installation: Gist: Speed of installing telephone in defined settings (for

example, in an automobile).

Reconfiguration: Gist: Work-hours to modify for varied uses (for

example, coupling to personal computer or power supplies).

In fact, we then further decomposed these into a total of 18 elemen-

tary objectives. However, such detail is not required for this example!

Step 3

Once we were satisfied that we had captured the scope of Service-

ability, we added further definition to specify the requirement in

measurable and testable terms: we identified a Scale and a practical

way of measuring on that Scale (a Meter). For example:

Repair:

Ambition: Improve the speed of repair of faults substantially, under

given conditions.

Scale: Hours to repair or replace, from fault occurrence to when

customer can use faultlessly, where they intended.

Meter [Product Acceptance]: A formal Field Test with at least 20

representative cases, [Field Audit]: Unannounced Field Test at random.

===================== Benchmarks ====================

Past [Product ¼ Phone XYZ, Home Market, Qualified Dealer Shop]:

{0.1 hours at Qualified Dealer Shop þ 0.9 hours for the Customer to

transit to/from Qualified Dealer Shop}.

114 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Record [Competitor Product XX]: 0.5 hours average. ‘‘Because they

drive a spare to the customer office.’’

Trend [USA Market, Large Corporate Users]: 0.3 hours. ‘‘As on-site

spares for large customers.’’

======================= Targets ======================

Goal [Next New Product Release, Urban Areas, Personal Users]: 0.8 hours

in total, [Next New Product Release, USA Market, Large Corporate

Users]: 0.2 hours <- Marketing Requirement, February 3 This Year.

===================== Constraints ====================

Fail [Next New Product Release, Large Corporate Users]: 0.5 hours or

worse on average <- Marketing Requirement, February 3 This Year.

Survival [Next New Product Release, All Markets]: 1.0 hours <- TG.

Repair
[Next New
Product
Release]

Time in
Hours

1.0 0.0

Record
[Competitor
Product XX]

0.5 0.20.30.8

Goal
[Next New Product Release,
Urban Areas, Personal Users]

Fail
[Next New Product Release,
Large Corporate Users]

Goal
[Next New Product Release,
USA Market,
Large Corporate Users]

Survival
[Next New Product Release, All Markets]

Trend
[USA Market,
Large Corporate Users]

Past
[Phone XYZ,
Home Market,
Qualified Dealer Shop]

Mobile Phone
Function Serviceability

Enhancement

Installation

Fashion Changes

Reconfiguration

Repair

Figure 4.3
Serviceability, a complex performance requirement, decomposes into numerous perfor-
mance attributes. One of these, the quality, Repair is expanded to show its targets and
constraints and, the supporting benchmark information.

Performance 115

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

At this point, everyone realized that we needed to do some ‘serious’

work defining our Serviceability objective. Only with an improved

requirement specification, could we begin to evaluate our ten specified

design ideas that claimed ‘‘increased ease of service’’!

Whoever had originally written the phrase ‘‘increased ease of service’’ had

failed to communicate a precise, unambiguous requirement. Of consider-

able concern, there was clearly no means of agreeing the specific require-

ment level with other stakeholders. Nor was there any means of verifying

we had met the requirement on delivery. In practice, the engineers were

designing the phone without any significant input from Marketing.

These same problems, of ‘lack of clarity’ and ‘lack of necessary detail’,

also occur elsewhere. In your business too!

4.3 Language Core: Scalar Attributes

All performance and resource/cost attributes are scalar. The Planguage

parameters used for specifying scalar attributes1 include:

. Ambition

. Scale

. Meter

. Past

. Record

. Trend

. Goal (abbreviation for ‘Planned Goal’ for performance attributes)

. Budget (abbreviation for ‘Planned Budget’ for resource attributes)

. Stretch (abbreviation for ‘Stretch Goal’ or ‘Stretch Budget’)

. Wish (abbreviation for ‘Wish Goal’ or ‘Wish Budget’)

. Fail

. Survival (abbreviation for ‘Survival Limit’).

Each scalar attribute must be specified using a tag, and an appropriate

set of these parameters. Past, Record and Trend are used to specify

benchmarks, Goal or Budget,2 Stretch and Wish are used to specify

targets, and Fail and Survival are used to specify constraints.

1 For the sake of simplicity, only the abbreviations for these parameters tend to be used

in the main text of this book. For example, where ‘Stretch’ is used, distinction is not

made between ‘Stretch Goal’ and ‘Stretch Budget’ as it is evident from the context

whether you are specifying a goal or a budget.
2 In the past, ‘Plan’ was used instead of ‘Goal’ and ‘Budget.’ Use of ‘Plan’ is still

perfectly acceptable if it better suits your organizational culture. ‘Plan’ does have the

advantage of being simpler and of better conveying to people that it is a level that is

subject to stakeholder acceptance and negotiation.

116 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

The numeric values of the target, constraint and benchmark parameters

define the attribute levels. Note that benchmarks refer to existing or past
values, or future estimates extrapolated from past values, whereas targets

and constraints are future requirement values.

Here is some further detail about the main specification concepts:

Ambition

This is a descriptive parameter used to express the level of expected

performance in words.

Scale

The heart of a scalar attribute specification is the ‘scale of measure’

parameter, Scale (sometimes also known as the ‘units of measure’

parameter). The Scale states the specific definition of a scalar attribute

that we intend to use. It defines the units for measurement (for

example, ‘bits per second,’ ‘miles per hour,’ ‘mean time between

failure’ and ‘number of new customer contracts per year’).

While suitable scales of measure for resources/costs are relatively

obvious to most people, identifying suitable Scales for performance

attributes, especially for qualities, is more challenging. There are, as

yet, few widely recognized standardized Scale definitions available.

(See further discussion in the next chapter, ‘Scales of Measure’.)

Scale: A scale of measure, stating the units to be used for numerically

expressing a scalar attribute level.

Meter

The Scale parameter is supported by the Meter parameter, which

defines, references or outlines a practical and economic method for

actually carrying out the measurement of the numeric level of the

attribute in a real system. More than one Meter may be required if the

means of measuring is going to alter over time or vary according to the

place and conditions.

Meter: A practical method for measuring and testing a scalar attribute

level, on a defined Scale.

Benchmarks

The benchmark parameters, Past, Record and Trend are used for

specifying historical, current or extrapolated performance levels. It is

Performance 117

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

important that we understand what our own existing systems, our

competitors’ systems and, more generally, any other relevant systems,

are achieving.

Past: A relevant benchmark level worth consideration that has already

been achieved in some defined [time, place, event] conditions. We are

interested in the levels achieved by any relevant existing system (our

own, competitive, or any other system).

Record: A Past, which is the best-known result; a state-of-the-art

numeric value.

Trend: An extrapolation of past data, trends and emerging technology

to a defined [time, place, event] conditions. Aside from our own

project’s plans to improve this level, what future levels are likely to

be achieved by others? What will we be competing with?

Targets

The target parameters, Goal or Budget, Stretch and Wish, define the

attribute levels for success, motivation and dreams respectively.

Goal: A future required level under defined [time, place, event]

conditions, which has to be achieved to claim success in meeting a

performance attribute requirement. Goal levels are also a signal to stop

investing in levels better than this one, as the value gained is most

likely insufficient to justify additional costs.

Budget: A future required level under defined [time, place, event]

conditions, which has to be achieved to claim success in staying within

a resource attribute requirement. A signal to worry about resource

usage when more resources are estimated to be needed, or are really

used, than this ‘acceptable’ level of cost.

Stretch: A future desired level, under defined [time, place, event]

conditions, which is designed to challenge people to exceed Goal

levels or use less than Budget levels.

Wish: A future desired level, currently a ‘dream’ target level, under

defined [time, place, event] conditions, which has some value to a

stakeholder. The requirement is not planned or promised, due to

technical or cost reasons, but it is recorded and kept in the requirement

database (even if not acceptable now) so that it can be borne in mind.

Constraints

The constraint parameters, Fail and Survival, state the levels for some

kind of system failure and system survival respectively.

118 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Fail: A future required level under defined [time, place, event] condi-

tions, that is necessary to avoid some kind and degree of system

failure, while still allowing the system to operate.

Survival: A future required level under defined [time, place, event]

conditions, which is necessary to avoid total system demise. In other

words, it is a level necessary for the survival or viable operation of the

system.

Conditions

It is also important to distinguish amongst the different numeric levels

required for different conditions. Different times, different places and

different events can all give rise to requirements for different attribute

levels. Qualifiers should be used to specify the qualifying conditions

for the different specified levels. Each of the above Planguage para-

meters will normally contain a qualifier and/or be within the scope of

a qualifier defined elsewhere that applies to this specification. A

qualifier can be used after almost any tag or parameter to be specific

about dates, markets, products, components, stakeholders and other

conditions. (See also further discussion of qualifiers in Section 2.7.)

[Time, Place, Event] or [When, Where, If]: Qualifiers specify

the conditions for a specification being valid, in force or effective.

All conditions must be ‘true’ for the associated specification to be

valid.

Here is an example to illustrate the parameters just defined:

EXAMPLE Usability [New Product Line, Major Markets]:

Ambition: To achieve a low average consumer time to learn to use our telephone
answerer under stated conditions.

Scale: Average number of minutes for defined [Representative Consumers and all
their household family members over 5 years old] to learn to use defined [Basic Daily
Use Functions] correctly.

Meter [Product Acceptance]: A formal Field Test with at least 20 representative cases,
[Field Audit]: Unannounced Field Test at random.
Past [Product XYZ, Home Market, People between 30 and 40 years old, in homes in
Urban Areas, <for one explanation & demonstration>]: 10 minutes.

Record [Competitor Product XX, Field Trials]: <5 minutes?> <- one single case
reported,
[USA Market, S Corporation]: 10 seconds <- Public Market Intelligence Report.

Fail [Next New Product Release, Children over 10]: 5 minutes <- Marketing
Requirements February 3 Last Year.
Goal [Next New Product Release, Urban Areas, Personal Buyers]: 5 minutes,

[Next New Product Release, USA Market, Large Corporate Users]: 5 minutes <-
Marketing Requirements February 3 Last Year.
Stretch [Next Year]: (Record [USA Market] – 10%).

Performance 119

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Table 4.1 Basic Planguage parameters for scalar attribute specification. See also Table 1.1 for the
additional basic generic Planguage parameters.

Planguage Parameters for Scalar Attributes

Scalar Attribute
Parameter

Meaning Used for Note also

Scale: Definition of the scale or
units of measure

Defining the variable varying
performance or cost concept
with precision and clarity

Contractual use
Icon: -|-|-

Meter: Definition of how we are
going to measure or test the
level of this attribute

Determining the real world
numeric levels in practice

Contractual use
Icon: -|?| -

Past: A known measured
benchmark of an
interesting past or current
level

Providing a baseline attribute
level

A useful reference
point
A benchmark
Icon: <

Record: A ‘state of the art’ level If a Goal or Budget is near to
or better than the Record, then
a warning of extra risk and cost
is implied

A useful reference
point
A benchmark
Icon: <<

Trend: From extrapolation of
existing data, an estimated
future level

A cross-check that the Goal or
Budget level is ambitious/
competitive enough

A useful reference
point
A benchmark
Icon: ?<

For performance
attributes, Goal:
For resource
attributes, Budget:

A future, target
requirement level, to be
met or bettered for success
and stakeholder satisfaction

Understanding the future
requirement level. Knowing
when to stop designing,
investing and developing

A contractual full
payment level
A target
Icon: >

Stretch: An interesting, but
difficult to attain, target
level

To motivate teams to do better
than currently considered
practical or economic

No contractual
commitment
A target to strive
towards as a challenge
Icon: >þ

Wish: A desired level, dreamed of
by some stakeholder, even
if unrealistic

Better understanding of the
stakeholder needs. Potential
requirement direction when
feasible later

No contractual
commitment
whatsoever –
completely
unbudgeted
A stakeholder ‘dream’
to bear in mind
Icon: >?

Fail: A future requirement level,
which is necessary to avoid
some sort of system failure.

Stating a minimum
requirement for delivery levels

Contractual use as a
minimum payment
level

A constraint Understanding the minimum
levels for any tradeoffs

Icon: >>

Survival:* A future requirement level,
which is necessary to avoid
total system failure.
A constraint

Stating an absolute minimum
requirement for any valid
delivery or operation
Failure to meet a Survival level
means total system failure

Contractual use as a
‘non-payment’ level
Icon: []
Note this icon is
deliberately similar to
that used for qualifiers

Note : *The Catastrophe parameter is an alternative to the Survival parameter. See the Glossary. ‘Survival’ is used in the text of this book.

120 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Note, terms defined by the project such as ‘Major Markets’ are

capitalized to indicate that they are already, or will be shortly, more

formally defined elsewhere. They will not necessarily be defined in

these textbook examples. For example,

Major Markets: Defined As: {USA, Japan, Europe, India}.

There are other additional parameters that can be used to describe a

scalar requirement. Some of these are shown in Figure 4.12, Scalar

Requirement Template.

Past: any useful reference
point. A performance or

resource level achieved,
in say, your old product or
a competitor’s organization

Record: best in some class, state

of the art. Something to beat.
A challenge for you. An extreme
Past

Trend: a future
estimate based
on the Past

Survival: a level
needed for
system survival

Goal: the practical level
needed for satisfaction,
happiness, joy and
100% full payment!

Wish: a level valued by a
stakeholder, but which might

not be feasible. Project is not
committed to it

Stretch: a level that is valued,
yet presents a challenge to attain

Fail: a level needed
to avoid a system failure
of some kind

Note: This diagram applies to performance attributes and shows performance scale arrows.
With a change to show scalar resource arrows, all the parameters also apply to resource
attributes, apart from the Goal parameter, which is replaced by Budget for resource attributes.

Figure 4.4
Performance benchmarks, targets and constraints.

Performance 121

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

4.4 Rules: Scalar Requirements

Tag: Rules.SR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Gist: Rules for Scalar Requirement Specification.

Performance
Requirements

Process.PR

Sources:
• Marketing documentation
• Contracts
• Current system
 documentation including
 product plans and Evo
 feedback
• Current system reviews
• Current performance
 issues
• Any guidance and/or
 other standards in addition
 to rules as found in
 handbooks and catalogues

Performance
Requirements

Generic
Specification

Rules

Rules.GS

Requirement
Specification

Rules

Rules.RS

Scalar
Requirement

and Scale
Definition

Rules

Rules.SR
Rules.SD

Figure 4.5
Performance requirements are subject to at least three types of rules for specification.
These rules should be used in the SQC of performance requirements.

122 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Note: These rules apply to both performance requirement specifica-

tion and to resource requirement specification.

Base: The generic rules for specification (Rules.GS), the rules for

requirement specification (Rules.RS) and the specific rules for scale

definition (Rules.SD) apply.

R1: Completeness: All scalar attributes, that are arguably critical to

success or failure, shall be identified, specified and thoroughly defined.

R2: Explode: Where appropriate, a complex scalar requirement shall

be specified in detail using a set of complex and/or elementary scalar

attributes.

Note: In addition to detailing by means of elementary specifications, you

can continue decomposing scalar specifications by using sets of [qualifiers].

R3: Scale: All elementary scalar attributes must define a single numeric

Scale, fully and unambiguously, or reference such a definition.

R4: Meter: A practical and economic Meter, or set of Meters, shall

be specified for tracking levels on each Scale. A reference to a full

definition or standard measuring process for all identified Meters

must be given. As an initial minimum for a new Meter, an outline

of the Meter measuring process is permissible.

R5: Benchmark: A reasonable attempt shall be made to specify

benchmarks {Past, Record, Trend} for our current system, and for

relevant competitive systems. Explicit acknowledgement must be

made where there is no known benchmark information.

R6: Requirement: At least one target level {Goal or Budget, Stretch,

Wish} or Constraint {Fail, Survival} must be stated for a scalar

attribute specification to classify as a requirement specification. A
specification with only benchmarks is an analytical specification, but not
a requirement of any kind.

R7: Goal or Budget: The numeric levels needed to meet requirements

fully (and so achieve success) must be specified. In other words, one or

more [qualifier defined] Goal or Budget targets must be specified. The
need for target levels to specifically cover all short term, long term and
special cases must be considered.

R8: Stretch: When you want to indicate an engineering challenge,

in order to motivate design engineers to find designs to achieve

better-than-expected levels, specify a ‘Stretch’ target (using a Stretch
parameter). You should also include information about the benefits of

reaching this target (using Rationale).

R9: Wish: Any known stakeholder wish level (a level that has some

value to a stakeholder, but only a level to be dreamed of, it is an

Performance 123

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

uncommitted level) shall be captured in a ‘Wish’ statement (with
Rationale). Even if the Wish level cannot realistically yet be converted into
a practical target level, it is valuable competitive marketing information
and may allow us to better satisfy the stakeholder at some future point.

R10: Fail: Any known numeric levels to avoid system, political, legal, social,
or economic loss or pain must be specified. In other words, one or more

[qualifier defined] Fail constraints must be specified. Several Fail levels may
be useful for a variety of short term, long term, and special situations.

R11: Survival: The numeric levels to avoid complete system failure (a

totally unusable or unrecoverable system) must be specified. In other

words, any [qualifier defined] constraint levels at which system survival

is completely at risk must be identified, using Survival parameters.

4.5 Process Description: Performance
Requirements

Process: Performance Requirements.

Tag: Process.PR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Stretch

Goal

Stretch

Wish

Fail

Survival
Fail (Too Low)

Survival
Wish

Survival

Survival

Performance Resource

Budget

Figure 4.6
How the scalar requirement parameters can be used to describe real-world situations.

124 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Entry Conditions

E1: The Generic Entry Conditions apply. The list of valid source

documents could include marketing documentation, contracts, cur-

rent system documentation, current system reviews, any lists of system

performance issues and any initial design specifications. It specifically

includes any documentation of standards that applies, such as hand-

books and catalogues. The required specification standards include

{Rules.GS, Rules.RS, Rules.SR and Rules.SD}.

Procedure

P1: Scan all input (source) documents for implied (for example, via

design specifications) or explicitly expressed performance requirements.

Build a list of performance requirements categorized by stakeholder type.

P2: Next, scan all input (source) documents (including any design

documents and strategic plans) for design ideas. Mark the design ideas

as requirements, ONLY if they are intentional design constraints (as
they are then true requirements). Otherwise, if they are not constraints,

determine and specify the possible performance requirements that led

to these design ideas being specified. Add these ‘implied’ performance

requirements to the overall list of requirements. You can keep the design
ideas, separately, for design phases. But get them out of the real require-
ments. You might well cross-reference the implied requirements (Impacts:
<Requirement X>.) and design suggestions (Is Supported By: <Design
Idea Y>.) for future understanding of why they are there.

P3: Using the P1 lists (explicit requirements) and P2 lists (requirements
derived from design ideas), establish a comprehensive list of candidate

performance requirements. Specify at least Tag, and possibly a Gist or

Ambition. Include cross-reference to any Sources (<-), Assumptions,

Dependencies and Risks you can determine.

P4: Check handbooks, catalogues and lists of standard performance

requirements for ideas of additional performance requirements, which

you should consider. Remember that you need to specify things that are
currently taken for granted because they are not problems in any of your
current products or systems. We have to keep our system healthy in the
future, consciously!

P5: Consider the total stakeholder environment. This involves not just

your one or two users and customers, but more likely, your ten or

more internal and external stakeholders, such as help desk, installers,

politicians, marketing and customer trainers. Using the input docu-

ments, brainstorm to determine each stakeholder’s critical qualitative

attributes. Ensure that the critical performance attributes are identi-

fied on your requirements’ list. Interview the stakeholders to get

Performance 125

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

feedback and confirmation about your specification. Add to the list of

requirements or modify them as necessary.

P6: For each identified performance requirement, specify it in detail

using the rules that apply (Rules.GS, Rules.RS, Rules.SR and

Rules.SD). Ensure each performance attribute is measurable in practice.

P7: Consider which performance requirements are key, and must there-

fore be controlled. Identify the most important ‘top ten’ performance

requirements. Group the others as ‘Diverse’ or ‘Less Critical’ if you like.

P8: Perform Specification Quality Control (SQC) on the performance

requirements. Correct any identified defects, and calculate the remaining

major defects/page (a page being 300 words of non-commentary text).

Check against the rules: {Rules.GS, Rules.RS, Rules.SR and Rules.SD}.

Exit Conditions

X1: The Generic Exit Conditions apply. The maximum possibly

remaining major defects/page must be less than one.

X2: The Requirement Specification Owner (usually specified as

‘Owner: <name, e-mail address or department>.’) agrees to release

the performance requirement specification with their name on it.

They have veto on release.

4.6 Principles: Performance Requirements

1. The Principle of ‘Bad numbers beat good words’

Poor quantification is more useful than no quantification; at least it

can be improved systematically.

2. The Principle of ‘Performance quantification’

All performance attributes can be expressed quantitatively,

‘qualitative’ does not mean unquantifiable.

3. The Principle of ‘Threats are measurable’

If the lack of a performance attribute can destroy your project, then

you can measure it sometime; the only issue will be ‘‘how early?’’

4. The Principle of ‘Put up or shut up’

There is no point in demanding a performance requirement, if you

cannot pay or wait for it.

5. The Principle of ‘Deadline or die’

There is no point in demanding a performance requirement, if you

would always give priority to something else, for example, a deadline.

126 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

6. The Principle of ‘Dream, but don’t hold your breath’

There is no point in demanding a performance requirement, if it

is outside the state of your art.

7. The Principle of ‘Benchmarks and targets’

Numeric past ‘history’ levels and numeric future requirement

levels together complete the performance requirement definition

of relative terms like ‘improved’.

8. The Principle of ‘Scalar priority’

In practice, the first priority will be survival,

The second priority will be avoiding failure,

The third priority will be success,

And the required levels for all of these will be constantly changing.

9. The Principle of ‘Many-splendored things’

Most performance ideas are usefully described by several measures

of goodness.

10. The Principle of ‘Limits to detail’

There is a practical limit to the number of facets of performance

you can define and control.

It is far less than the number of facets that you can imagine might

be relevant. (Try a limit of just the Top Ten!)

4.7 Additional Ideas: Performance Requirements

Handling Complex Performance Requirements

Many performance requirements, like the quality requirement, ‘Usabil-

ity’, can be expressed in greater detail using sub-requirements (such as

Learning Time, Error Rate and Minimum Skills Entry Level). There are

many possible interpretations, and they all have some use or validity. We

call such decomposable ideas ‘complex requirements’. It would be easy

to think, ‘‘there is no measure to cover such a complex requirement.’’

Our attitude is pragmatic and says, ‘‘We will define a reasonable number

of the sub-requirements quantitatively, and use them to define what we

mean.’’ We only need to identify sufficient sub-requirements to capture

the meaning of the performance attribute in the current system context.

The Planguage structure for a hierarchy is as follows:

Tag:

Sub-Tag 1: Scale: <some scale>. <Other parameters as needed>,

Sub-Tag 2: Scale: <some other scale>. <Other parameters as

needed>, . . .

Performance 127

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Sub-Tag n: Scale: <yet another scale definition>. <Other parameters

as needed>.

For example, the first step of the practical example given in Section 4.2

is primarily discussing this idea of expanding a complex quality

requirement, ‘Serviceability’, into a number of elementary and

complex quality requirements (‘Repair’, ‘Enhancement’, ‘Fashion

Changes’, ‘Installation’ and ‘Reconfiguration’).

Here are some known ‘classic’ decomposition examples in the form of

a {descriptive tag set}:

EXAMPLE Performance: {Quality: {Availability {Reliability, Maintainability, Integrity}, Adapt-
ability, Usability}, Resource Saving, Work Capacity: Storage Capacity}.

EXAMPLE Maintainability: {Problem Recognition, Administrative Delay, Tool Collection,

Problem Analysis, Change Specification, Quality Control, Modification Implemen-
tation, Modification Testing, Recovery}.

EXAMPLE Usability: {Entry Level Experience, Training Requirements, Handling Ability, Like-
ability, Demonstrability}.

(See also the next chapter, especially Section 5.7.)

Limit the Amount of Detail

Expanding complex performance requirements into a number of sub-

requirements (and the subsequent need to further expand any sub-

requirements that are also themselves complex requirements) usually

leads to a great deal of detailed information when specification of the

parameters is carried out.

Make sure you focus on the critical (key-influence) performance

attributes. Tracking the top ten attributes is usually more than suffi-

cient to make a start. Remember, if you are using evolutionary

delivery, you can always decide to modify which attributes you are

monitoring over time.

Setting Scalar Levels

Implicit Assumptions Supporting a Scalar Parameter Level

When you set a scalar level, there are certain implicit supporting

assumptions, which apply. For example, when you specify a Goal

level, you are very unlikely to mean ‘this level and only this level.’

You actually are specifying that a stakeholder wants ‘this level or
better.’ Of course, all the other simultaneously specified targets and

128 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Tag
Gist
Ambition
Scale

System Requirements

Stretch
Goal

Wish

Fail

Survival

Targets

Constraints

Quality Requirements
Objectives such as ‘Usability’

Performance Requirements
(Objectives)

Quality Objective Hierarchy
(for Complex Objectives)
Many Levels and Branches of

Hierarchy Possible
Such as ‘Ease of Entering Data’

Quality Requirement (Elementary Level)
such as ‘Errors introduced by defined [System User]’

Such as “Less than 4 Errors
per 100 Transactions by

<Trained User>”

Survival Levels

Failure Levels

Supporting Information:

Benchmarks
Past
Record
Trend

Other Requirement Types:
Function
Budget
Design Constraint
Condition Constraint

Other Performance Requirements:
Workload Capacity Requirement
Resource Saving Requirement.

Note: These will have the same structure
as a Quality Requirement.

Figure 4.7
Requirement specification hierarchy for a quality requirement.

Performance 129

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Table 4.2 A teaching example supplied by Erik Simmons, Intel. The data is not real! Note the
explicit direction specified for the Fail levels.

Attribute Parameter

Fail Goal Stretch

Performance
Power (watts) >10 W 5 W 3–4 W
Product Cost (each unit) >$21.85 $21.60 $21.50
MTTF (hrs) <10,000 20,000 25,000
Battery (hrs) <8 12 16
Weight (lbs) >5 3 2
Display (diagonal in
inches)

<7 8 9

Resource
Ship Date >March Next Year January Next Year November This Year
Effort (hrs) >25,000 23,000 22,000
Peak Headcount >15 12 10

Function

Survival

Survival
Fail

Budget
Stretch

Wish

Resource Performance

Planned Success Range or
‘Landing Zone’

Arrows mark the
direction of ‘better’
from the system viewpoint

Wish
Survival

Fail
Goal

Stretch

Survival

Figure 4.8
Implicit direction for ‘better’ along a Scale.

130 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

constraints that apply under the same set of conditions have to be

taken into account as well: the stakeholder wants all these requirements

at the same time. By specifying the Goal level, the stakeholder is

providing the information about what they consider the minimum
performance level for success in the light of the other requirements.

Exactly what ‘or better’ means in numeric terms depends on your Scale

definition. A stakeholder wants more performance and to use less
resource (see Figure 4.8). However, the Scale finally dictates the ‘direc-

tion’ of the numeric value and, therefore, the numeric interpretation of

‘better.’ For example, ‘better’ performance can mean a reduction in the

time taken to carry out a task – a numeric level would therefore be

expected to reduce over time as performance improved along the Scale.

4.8 Further Example/Case Study: Performance
Specification for a Water Supply

Here is a real example of specifying Norwegian Church Aid’s performance

requirements (objectives) for improving the water supply in Eritrea.

Function: Supplying Water [Eritrea]<- Norwegian Church Aid (NCA).

0

20

40
60

80

100
Utilization A

Line Balancing

Utilization B

Line Utilization

Response TimeSynchronization

Assessment

Team Motivation

Solution Accuracy

Stretch
Goal
Past

Figure 4.9
A real case study diagram (slightly modified to preserve anonymity) showing a net of
multidimensional performance scales of measure. It shows a snapshot of a system at a
specific time. The areas show the Past [At Current Time], the gap from Past to the Goal
targets, and the gap from the Goal targets to the Stretch targets. This is a powerful
graphical way of displaying scalar data.
Note: Resources are not shown and the Performance scalar arrows are spread through
360 degrees.

Performance 131

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

We began by capturing the immediate objectives:

EXAMPLE Operation and Maintenance

Local Control:
Ambition: Strengthen conditions for local management of Operation and

Maintenance.
Scale: % of Water Supply Pumps which <function> more than 23 hours out of each
24-hour period.
Meter: A <status report> from the Local Water Committees every quarter year.

Past [Eritrea, Four Years Ago]: 65� 5% <- Survey conducted by NCA’s health
co-ordinator.
Goal [Eritrea, By End of this Year]: 80%,

[Eritrea, By End of Next Year]: 90% <- NCA Planning Committee [May Last Year].
Pump Availability:
Ambition: No single Water Supply Pump shall be <out of order> for <a long

period of time>.
Scale: % of year Water Supply Pumps <function>.
Meter: Faults reported by the Local Water Committees and the Water Supply Projects.

Past [Eritrea, Four Years Ago]: 60� 40% <- ?
Goal [Eritrea, By End of This Year]: 90� 10% <- ?,
[Eritrea, By End of Next Year]: 95� 5%.

Water Supply Efforts

Well Rehabilitation:
Ambition: Rehabilitation of earlier water supply projects and efforts.

Scale: Number of Water Supply Pumps put into operation anew each year, which
satisfy the <minimum need>.
Meter: Reports by Local Water Committees every quarter year.

Past [Eritrea, Four Years Ago]: 30� 5%. ‘‘of a total of 300.’’
Goal [Eritrea, By End of This Year]: 40� 5% <- ?,
[Eritrea, By End of Next Year]: 35� 5%.
New Wells:
Ambition: Make newly drilled wells when other alternatives are not feasible.
Assumptions: {1. New Wells are only to be drilled when other alternatives are
impossible. 2. Institutional responsibility and participation from the local village

shall be defined and accepted in advance.} <- NCA Policy.
Scale: Number of New Wells completed by agreed dates and according to the
Contract between the Drilling Team and the Employer.

Meter: Reports by Local Water Committees every quarter year.
Past [Eritrea, Seven Years Ago]: 66,

[Eritrea, Six Years Ago]: 17.

Goal [Eritrea, By End of This Year]: 10,
[Eritrea, By End of Next Year]: 9.

Alternative Sources:
Gist: Alternatives to drilled wells will be developed whenever the situation

permits it.
Scale: Number of efforts per year, which result in <alternative water supplies>.
Meter: Reports by Local Water Committees, Aid Partners or Aid Projects every

quarter year.
Past [Eritrea, Five Years Ago]: 20,

[Eritrea, Four Years Ago]: 19.

Goal [Eritrea, By End of This Year]: 30,
[Eritrea, By End of Four Years]: 46.

132 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Once we had captured these objectives, we were pleased that we had a

clear statement of the requirements that could easily be used for planning

purposes and could readily be monitored. However, we soon realized

that these goals were not directly specifying people’s needs; for example,

improvement in health, clean water and ease of getting the water to

where it should go. Suggestions were consequently made for improved

goal setting with a series of new scales. For example, ‘average time to pick

up the water’ and ‘% of people that die/get sick due to unclean water.’

The major result of the specification was the recognition that the high-

level aims of the water projects needed better definition, and that the

water projects needed to be seen in that light.

4.9 Diagrams/Icons: Scalar Attribute
Requirements

Benchmarks

Targets

Constraints

Past – pointing backwards towards
the past

Trend – extrapolating into the future
based on past benchmark data

Record – a past state-of-the-art
worthy of noting

Goal – pointing forwards
Towards the future

Stretch – a challenging target
to try to attain

Wish – an unbudgeted
stakeholder dream

Fail – a level
indicating
pain or loss

Survival – lower limit
for System survival.
System demise
if not met

Survival – upper limit
for System survival.
System demise
if not met

Note: A Scale icon is drawn as a line with an arrowhead, connected to a function oval
symbol. Performance scales are to the right from the function oval (O→), and resource scales
are at the left of the oval with arrowhead connected to the oval (→O). The performance and
resource attribute icons must both include a function icon (an oval) to distinguish them from
each other. The arrow in a performance attribute points away from the function oval. For a
resource attribute, the arrow points towards the function oval.

Figure 4.10
Three graphical performance attributes showing the icons for scalar performance attri-
bute levels: three analytical benchmarks, three future requirement targets and two future
requirement constraints, respectively. Usually an attribute would have a mix of whatever
benchmark, target and constraint levels were relevant.

Performance 133

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Function

Past
[Last Year]

Performance
benchmark
level

Performance
Attribute

Scale of Measure

[

Fail
[This Year] Goal

[Next Year]
Goal
[This Year]

Performance
target levels

Survival
[This Year]

Performance
constraint levels

Figure 4.11
Example of using some of the scalar icons: two performance target levels and two con-
straint levels compared to one benchmark level.

Table 4.3 Icons for scalar attribute requirements.

Planguage Term Icon
Attribute Definition

Gist S
Ambition @.S
Scale -|-|-
Meter -|?|-

Targets
Goal or Budget >
Stretch >þ
Wish >?

Constraints
Fail !
Survival []

System Space Conditions
Time, Place and Event [qualifier conditions]

Supporting Information
Source <-
Comment ‘‘text.’’

Benchmarks
Past <
Record <<
Trend ?<

134 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Elementary scalar requirement template <with hints>

Tag: <Tag name of the elementary scalar requirement>.

Type:

<{Performance Requirement: {Quality Requirement,

Resource Saving Requirement,

Workload Capacity Requirement},

Resource Requirement: {Financial Requirement,

Time Requirement,

Headcount Requirement,

others}}>.

============================ Basic Information ===========================

Version: <Date or other version number>.

Status: <{Draft, SQC Exited, Approved, Rejected}>.

Quality Level: <Maximum remaining major defects/page, sample size, date>.

Owner: <Role/e-mail/name of the person responsible for this specification>.

Stakeholders: <Name any stakeholders with an interest in this specification>.

Gist: <Brief description, capturing the essential meaning of the requirement>.

Description: <Optional, full description of the requirement>.

Ambition: <Summarize the ambition level of only the targets below. Give the overall real

ambition level in 5–20 words>.

============================ Scale of Measure ===========================

Scale: <Scale of measure for the requirement (States the units of measure for all the targets,

constraints and benchmarks) and the scale qualifiers>.

============================= Measurement ============================

Meter: <The method to be used to obtain measurements on the defined Scale>.

============= Benchmarks ============= ‘‘Past Numeric Values’’ =============

Past [<when, where, if>]: <Past or current level. State if it is an estimate> <- <Source>.

Record [<when, where, if>]: <State-of-the-art level> <- <Source>.

Trend [<when, where, if>]: <Prediction of rate of change or future state-of-the-art level> <-

<Source>.

============== Targets ============== ‘‘Future Numeric Values’’ =============

Goal/Budget [<when, where, if>]: <Planned target level> <- <Source>.

Stretch [<when, where, if>]: <Motivating ambition level> <- <Source>.

Wish [<when, where, if>]: <Dream level (unbudgeted)> <- <Source>.

============== Constraints ============= ‘‘Specific Restrictions’’ =============

Fail [<when, where, if>]: <Failure level> <- <Source>.

Survival [<when, where, if>]: <Survival level> <- <Source>.

============================= Relationships =============================

Is Part Of: <Refer to the tags of any supra-requirements (complex requirements) that this

requirement is part of. A hierarchy of tags (For example, A.B.C) is preferable>.

Is Impacted By: <Refer to the tags of any design ideas that impact this requirement> <-

<Source>.

Impacts:<Name any requirements or designs or plans that are impacted significantly by this>.

======================= Priority and Risk Management ======================

Rationale: <Justify why this requirement exists>.

Value: <Name [stakeholder, time, place, event]: Quantify, or express in words, the value

claimed as a result of delivering the requirement>.

Assumptions:<State any assumptions made in connection with this requirement><-<Source>.

Dependencies: <State anything that achieving the planned requirement level is dependent

on> <- <Source>.

Risks:<List or refer to tags of anything that could cause delay or negative impact> <-<Source>.

Priority: <List the tags of any system elements that must be implemented before or after this

requirement>.

Issues: <State any known issues>.

Figure 4.12
A scalar requirement template with hints.

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

4.10 Summary: Performance Requirements

The basic initial step to get control over the primary ‘drivers’ for plans

and resulting projects is to have a clear specification of what we want.

Consider:

. Performance requirements are often ‘hidden’ in undefined require-

ment terms, such as ‘increased adaptability’.
. Performance requirements may be hidden in designs and plans that

have been inadvertently specified amongst the requirements. For

example ‘Flexible Contracts’ is a design idea seeming to imply that

there is some (undefined) form of ‘flexibility’ required, but what is

it?
. Performance requirements need to be numeric and to be qualified by

conditions, so we can specify exactly what stakeholders want and the

[time, place and event] conditions that we must meet.
. Performance requirements must be specified in such a way that they

are testable.
. Performance levels are variable; they change from project to project

and vary within a project over time, place and events.

Performance requirements are the key statements of expected and

necessary critical stakeholder benefits for a project. Performance

requirements are the main reason why projects are funded at all. So

it is critical that they are done well and managed well.

136 Competitive Engineering

