
14
The management
software productivity

Introduction
14.1 What is software?
14.2 Evaluating the software product
14.3 The long-term productivity considerations
14.4 Users should judge software: the BHP and Volvo cases
14.5 Continuous monitoring
14.6 Formal testing of productivity-related software attributes
14.7 Productivity is managerial not technical
14.8 Management productivity
14.9 Professional productivity
14.10 Productivity tools
14.11 Fagan's inspection method
14.12 The productivity of evolutionary delivery
14.13 Project data collection and analysis
14.14 Summary

References and further reading

252 Software engineering management

¯ Introduction

Productivity should be measured in terms of net real effects on
high-level management goals of a business or institution. Any
attempt to quantify productivity by many common, but more
partial measures, such as 'volume of work produced' is a great
deal less useful. These partial measures do, however, have a
place. They can provide some insight and control over
productivity in the early stages or at a low measurement cost.
 Productivity should be measured as the net effect of a
solution on results. This means that we have to account for the
cost of developing and operating the solution in both the short
and long terms, as well as the cost of all the side-effects of
the solution.
 Productivity planning must be carried out at a high
management level in order to guarantee the relevance of the
solutions to management objectives. Productivity goals are
usually multidimensional and complex, but they can be written
down, agreed upon, and expressed in clear and measurable ways.
 The tools for improving software productivity are many.

They can be implemented immediately with interesting results,
and then strengthened by a long-term series of evolutionary
changes and improvements. Each of these changes is based on
continual monitoring of productivity results up to that point.

¯14.1 What is software?

Most professionals interpret the term 'software' itself in a
dangerously narrow way. Behind most uses of the term 'software'
we find the concept of what I prefer to call 'logicware,' or
what we call 'programs.
 Websters Unabridged Dictionary defines software as 'the
programs, data, routines, etc. for use in a digital computer, as
distinguished from the physical components (hardware).'
 Since the production of software today involves many more
additional non-hardware components than were formally recognized
in the early days of digital computers, it is only natural that
we update our concept of software by including these new items
in our consideration of software productivity. We cannot discuss
'software productivity' adequately, if we do not have a complete
definition of the term 'software' itself.
 Software can be divided into the following main categories:
logicware (computer program logic); dataware (computer-readable
files and databases); peopleware (plans and methods for
organizing people

The management of software productivity 253

to make use of the system or to develop it or test it); userware
(user documentation in paper or display screen versions, and
user command languages).

¯14¯2 Evaluating the softw'are product

Productivity is, as mentioned earlier, measured in terms of the
planned attributes of the product. It is these attributes which
will enable us to determine whether, and to what degree, the
user has attained his objectives (user productivity). One 'user'
of the product can be the producer himself, and the use can be
to sell the product or to sell related products (such as
hardware).
 There are a large number of attributes which together
determine the total short-term and long-term usefulness of

software. They have been discussed extensively in this book, and
are catalogued in Chapter 19.
 There are some software product attributes which are of
immediate everyday value; for example reliability, usability,
and work-capacity. It is productive u>ork which is necessary to
achieve the needed levels of these attributes. It is a very
common failing to ignore these qualities, and to think that
productivity is in 'coding' the bare functional logic only. The
result is an illusion of productivity, but not the reality.
 It is a very dangerous illusion, since high quality
attribute levels can cost the largest part of the entire
development effort. This is easily illustrated by observing the
huge effort needed to build extreme ease of use (usability) into
software. The Apple Macintosh design effort is an example of
this. A series of articles relating to the effort to design
ease-of-use into the Macintosh, can be found in Byte, February
1984, August 1984, and December 1984.

¯14.3 The long-term productivity considerations
Developer (producer) productivity produces good software
effectively. User productivity is enhanced by the use of good
software. The quality attributes of software impinge on user
productivity.
 The particular quality attributes which impact the
productivity of both user and producer in the long run can be
difficult to see. The primary ones are maintainability,
extendability and portability (see Chapter 19 for definitions)
which are all related to the ease of change of the product in
order to meet long-term future needs.
 If these attributes are poorly engineered in the software
product, then there is a great danger that the product will die
or become poorer

254 Sofiware engineering management

in use. The investment needed to design and build these long-
term qualities into the system will determine whether it is
really productive in the future.
 Many a software project has suffered from insufficient
effort in the engineering of these areas, due to poor management
leadership. They have created the illusion of software
productivity (in the short term), at the expense of the l(~ng-
term productivity.
 Somebody (it is riot likely to be a programmer) who cares
about the true long-term productivity of the software effort,

must ensure that these long-range factors are engineered into
the software product.
 You should not wait to be asked, because the marketing
people and end users may riot be wise or mature enough to
explicitly ask for these properties. A responsible professional
will raise the issue, and force the people requesting the
software to include high quality long term attributes, or at
least to take full responsibility for not having done so.

The user as judge. principle:
The end users themselves, not the producers, should be the final
judge of productivity in the sense of sofiware quality.

 The intention of such a principle is to ensure that we can
measure the true user productivity given by the software
product, in all important areas, throughout its lifetime. Here
is a more detailed background for these principles.

¯14.4 Users should judge soft'w'are: the BHP and Volvo cases

For software producers selling to a free market, there is
adequate public judgement of the software quality in the trade
press, by the sales statistics, or at user group meetings. For
more captive users of software, such as those from a company
producing software for internal consumption, a more drastic
remedy is needed.
 Volvo of Sweden provided this by making it mandatory for
internal Volvo computer users to ask for a bid from their
internal Data Processing developm'nt facility, while at the same
time encouraging those users to ask for and accept alternative
bids for better software products from outside suppliers.

The management of software productivity 255

Example: Broken Hill fly

One of the most interesting examples of a powerful internal
control by the user of application software was at BHP (Broken
Hill Pty), the largest Australian industrial corporation (steel,
mining, oil, finance) from 1972.
 The users were given total power over the software
producers. After nine previous years of unprofitable and
unresponsive data processing development, top management stepped

in and introduced a user-controlled profitability measure of the
software value. This applied to internal developments, as well
as any support software required from outside. lfhe result was
that the 'academics' fled, and the survivors became dramatically
more responsive to the users' needs.
 The basic mechanism was a continuous (monthly)
applicationlifetime budgeting and accounting system which
compared a userdetermined application 'value' (in terms of real
money savings or productivity increases -- no 'intangibles') to
the real current costs of running the application. Projects
which fell below a minimum set level of profitability were
initially given a chance to improve the ratio. If this failed,
they were quickly killed.
 The net result, even in the first year, was that in spite
of a budgeted loss of several hundreds of thousands of dollars,
the actual result was a clear profit of several hundred thousand
dollars for the surviving software applications.
 Nobody in BHP was worried about producing 'lines of code.'
The entire surviving data processing staff (six hundred people)
had only two questions in their minds about all projects, at all
times: how can we keep the costs down as low as possible?; how
can we make the software so useful in terms of user cost saving
and user productivity (more steel plant productive capacity for
example) that the user management profit centers will give our
product a high dollar rating (part of which is charged back to
them), and thus keep it alive?

¯14.5 Continuous monitoring

The never ending judgement principle:
Software systems need to he judged on a continuous basis
throughout their lifetime - not just by the first user, the
first month.

 Software applications cannot simply be judged once, in a
postimplementation return-on-investment-analysis (though in my
experience, even this is not done often enough).

256 Sofiware engineering management

 Here are some of the reasons why the evaluation of software
applications should be reviewed regularly:

¯ hardware costs change dramatically year by year;
¯ maintenance changes might degrade performance and other

qualities;

¯ the user-environment changes - yesterday's winner may be
tomorrow's loser;

¯ management employees change jobs, and with that goes a
style of management which may have been key to the value of
the product.

,14.6 Formal testing of productivity-related software attributes

The multiple test principle:
Software systems should have formally defined acceptance test
criteria which an, applicable at all times for all critical
qualities.

 Several software qualities (for example maintainability,
portability, and usability) are keys for allowing the product to
be really productive. All of them are measurable and testable in
practice (see Chapter 19). There are unfortunately far too few
software professionals who know anything about measuring and
testing these properties of software.
 Software engineering management must institute a rigid
requirement for testing these qualities and other critical
attributes of the software system. If they fall below critical
levels, as determined by yourselves and you. users, it could
kill the entire software effort or product.

¯14.7 Productivity is managerial not technical

The principle of software productivity:
It is not the software itself which is productive. The
interesting results are created by people who make use of the
software.

 Most of the pr'~ductivity improvement techniques with
really significant impact are managerial, not technical in
nature. This was the conclusion drawn by Horst Remus of IBM
after years of monitoring productivity figures at IBM at their
California Santa Teresa Laboratories

The management of software productivity 257

(Remus, 1980). My own observation, based on measures of software

project productivity, is the same.
 Many software technologists seem totally ignorant of the
existence of the managerial and organizational methods which
lead to highly improved human productivity. The technologists
seem to believe that productivity is to be had through technical
means, such as ever more sophisticated programming languages, or
more sophisticated software support for their working
environment. There is some truth in this viewpoint, but it is
not where the really big improvements have been found.
 This point is brought out in a number of management texts
such as Peters and Austin (1985). It is clearly motivation and
organization that increases human productivity in relevant
directions. Technical devices may increase productivity 'in the
wrong direction.' (We can always increase 'lines of code', even
where the software being produced for the market is the wrong
design!)

¯14.8 Management productivity

Productivity of management at all levels above the software
technologist can be improved by:

¯ concentrating on determining user requirements;
¯ particularly noting those fluctuating or uncertain user

requirements which will require a suitable flexible
softecture (software architecture);

¯ creating an organization which is totally user-result-
oriented, even at the most technical level;

¯ implementing measurement systems which relate all technical
work to corresponding user-value and user-cost concepts;

¯ filtering user needs through competent business analysts,
infotects, softectc" and software engineers (do not allow
things to go directly to the softcrafters);

¯ provide users with the means to do a maximum of 'software
development' themselves; either by building such devices
into the product, or by supplying user-oriented development
languages (like spreadsheet software) to the users.

¯14.9 Professional productivity

The bwsitiess ajinlyst function can increase productivity of the
user by avoiding computerization when other options are better
or more cost effective, and by worrying about the 'non-software'
aspects of making

258 Software engineering management

your software productive for the user (like whether people are
still motivated to use it 'It all). The business analyst
operates at a higher level than most present day system
analysts. Too many analysts are primarily concerned with
analyzing the function to be automated. The business analyst
does not even presume that software is to be written, or even
that there is an information system problem.
 The infotect can contribute to professional productivity by
making sure that the information system problem is channelled to
the best solution area. Too many analysts are trained and
working in an environment where they really see only one
technical solution; for example, the company standard computer,
the prevalent languages and database support system. Sometimes
using a computer is not the most cost-effective way of doing
things, and some alternative computerized solutions are far
better than the conventional ones. The infotect is charged with
finding the most productive 'results' solution, irrespective of
the devices needed to accomplish it.
 The softect is a necessary function in a large software
engineering environment, in which there are many specialist
software engineers. The softect is the necessary synchronization
and coordination function for the many specialized engineers and
builders. The softect presumes that software must be designed,
and is only concerned with finding a technical solution set
which will satisfy the multiple conflicting objectives of the
use'.. as well as possible.
 The software engineer is also a productivity professional.
We speak of software engineering as though it were a single
speciality. But the history of other professions makes it clear
that specialization is the norm for large projects. We can
certainly identify the specialists even today in this area, even
though they do not always call themselves software engineers.
 The softect is also a specialist software engineer, the
speciality being overall control of a complex engineering
process. Other softwareengineering specialists are, for example,
concerned with work-capacity, availability, usability and
security.
 Software engineers can be expected to increase productivity
in their special area of competence. That is exactly what their
training should enable them to do. One measure of their
competence is how much they can improve their specialty
attributes; another is the degree to which they can correctly
predict or estimate what they will in fact achieve when all
side-effects are considered.

¯14.10 Productivi~ tools

Most all of the hghly-touted productivity tools (programming
languages, software support environments, database support
systems,

The management of software productivity 259

operating systems) offered by traditional industry, have failed
to deliver substantial net user-productivity in a well-
documented way. This has not prevented them from claiming
impressive productivity increases, forgetting that the real end-
product is user productivity. My experience in years of trying
to substantiate such claims is that:

¯ they are based on isolated cases and may well be due to

uncontrolled factors (the super-programmer on one project,
for example);

¯ they do not note, or even consider, undesirable side-
effects (such as performance destruction, or portability
reduction) which need to be considered in any fair
evaluation of real productivity;

¯ almost none of them meets the conditions of scientific
verification via controlled experiments, and statistically
valid assertions;

¯ most of them are concerned with producing only one area of
productivity, namely 'logic for functions.' Few of them
address any of the critical attribute dimensions of
technical software quality and cost; even fewer address
user benefits or results.

 I do not deny that some of these productivity tools have a
beneficial effect. But I have not yet found evidence for
impressive net benefits in software productivity which are as
impressive as those I have found for methods such as Fagan's
inspection, for evolutionary delivery and even the simple act of
formal specification of objectives.

¯14.11 Fagan's inspection method

Fagan's inspection method (Fagan, 1976) has regularly measured
net productivity increases of about 25% to 35% in software
project time to delivery. Exceptionally high savings have been
reported in the test planning area (Larson, 1975). Larson

reported, with Fagan later confirming the long term consistency
of the effect, 85% of test effort was saved as a result of using
inspection to check the quality of test design and planning.
Crossman (1979) has reported 18 to 1 and 30 to 1 improvements in
maintenance effort needed for software which has been inspected.
ICl in the UK has privately reported on one project that the 400
out of a total of 800 production planning programs which had
been inspected during their development were ten times cheaper
to maintain.
 These are the once-off productivity effects of inspection.
The really significant news about inspection is that the
statistical feedback it gives on defects and costs provides the
manager with a software engineering management accounting
system. This can be used to identify a wide range of
productivity problems in a software development process, and

260 Software engineering management

then to measure and see if the suggested solutions are working
as expected.
 Both IBM in the US, AT&T and ICL (International Computers)
have regularly used. inspection for monitoring and improving
their software development processes, in order to improve
productivity.
 The real productivity benefit is greater than is indicated
by a productivity curve alone. At the same time, a quality
indicator (lower defects) is improving, and this saves
productive effort in error repair (maintenance cost), as well as
enhancing the desirability of the supplier's products to
customers. It is highly probable, because of the nature of
inspection, that other quality indicators are also increasing
the net productivity of the use of inspection, as a management
accounting system, at the same time.

¯14.12 The productivity of evolutionary delivery

The most impressive practical method for ensuring dramatic
productivity in software projects, is still the least understood
of all the methods, evolutionary system delivery.
 IBM Federal Systems Division is a long-time]eader (since
about 1970) in the use of this method in the software
engineering arena. (Mills, 1980). Mills reports that all
projects using the method for the last four years have been
completed 'on time and under budget.' Surely that is a form of
productivity in itself which few software engineering managers
can claim (Gilb, 1985). See also Chapter 15 for an extensive

literature and experience survey.

,14.13 Project data collection and analysis

Another under-utiliz"d method for productivity through
management analysis of facts is the use of systematic project
data collection and analysis.
 The only really good example, in terms of an ongoing
collection process, that I have found in the public literature
is at IBM Federal Systems Division (Walston and Felix, 1977). An
interesting collection of data, but not so clearly ongoing, is
published in Software engineering economics by Barry Boehm of
TRW Systems (Boehm, 1981). Many pages of project data are
collected at the end of each project and analyzed in an APL
database at IBM FSD, Bethesda, Maryland.
 IBM FSD is able to compare systematically a large number of
projects on a number of factors regarding cost, delays and
methods used. This enables them to spot methods or environments
which are

The management of software productivity 261

more or less productive, and to take management action to weed
out the bad and to nurture the good.
 Most software engineering environments are not able to do
this anywhere nearly as well. Most rely on the faulty memories
of old warriors. The objective of software engineering
management is to increase the predictability in meeting our
objectives, whatever those objectives may be. We can therefore
measure our ability by measuring the deviation from our plans in
high priority areas.
 We must probably do this statistically, by collecting the
kind of data which IBM FSD has been collecting, or which Barry
Boehm has collected. For example, Boehm (in Software engineering
economics) says that in his selection of past projects, 70% of
the projects would be within 20% of the cost predicted by his
COCOMO cost estimation model and 30% of the projects would be
outside that.
 Harlan Mills of IBM claims to have found a method, in the
same class of systems that Barry Boehm is dealing with, which
guarantees no significant negative deviation for two important
attributes (delivery on schedule and cost). By the above
principle, Mills' methods (evolutionary delivery) are better
software engineering management principles than using the best-
known cost estimation models, in terms of getting real
management control over cost and delivery.

 Both examples are based on comparable sets of statistics
for comparable projects.

¯14.14 Summary

We can sum up with a set of principles regarding people
productivity as follows:

If you can't define it, you can't control it:
The more precisely you can specify and measure your particular
concept of productivity, the more likely you are to get
practical and economic control over it,

Producti"rlty is a multi-dimensional matter:
Productivity must be defined in terms of a number of different
and conflicting attributes which lead to the desired results

Productivity is a management responsibility:
If productivity is too low, managers are always to blame - never
the producers.

262 Software engineering management

Productivity must be project-defined; there is no universal
measure:
Real productivity is giving end users the results they need -
and different users have different result priorities, so
productivity must be user-defined.

Architecture change gives the greatest productivity change: The
most dramatic productivity changes result from radical change to
the solution architecture, rather than just working harder or
more efiectively.

Design-to-cost is an alternative to productivity increases: You
can usually re-engineer the solution so that it will fit within
your most limited resources. This may be easier than finding
ways to improve the productivity of people working on the
current solution.

A stitch in time saves nine:

Frequent and early result-measurements during development will
prevent irrelevant production.

The ounce of prevention (which is worth a pound of cure): Early
design quality control is at least an order of magnitude more
productive than later product testing. This is because repair
costs explode cancerously.

Do the juicy bits first:
There will never be enough well-qualified professionals, so you
must have efficient: selection rvles for sub-tasks, so that the
most important ones get done first.

References and further reading

Boehm, B. W., 1981, S.oftware engineering economics, Prentice-
Hall, N.J. Crossman, T., 1979, 'Some experiences in the use of
inspection teams
in application development,' IBM Guide/Share applications
development symposium proceedings, Monterey, California
Fagan, M.E., 1976, 'Design and code inspection to reduce errors
in program development,' IBM Systems Journal, 15, (3)
Gilb, T., 1985, 'Evolutionary delivery vs. the waterfall model,'
ACM Software Eng. Notes, July

The management of software productivity 263

Kitchenham, B., 1982~5. See frequent contributions to ICL
Technical
Journal. ICL, Bridge House, Putney, London SW6 3JH
Larson, R., 1975, 'Test plan and test case inspection,' IBM
Technical Report Tn 21.586, Kingston NY, April 4
Mills, Dyer and Quinnan articles in IBM Systems Journal, 19,
(4)1980 Peters, T. and Austin, N., 1985, A pass ion for
excellence, Random House
(USA) and Collins (UK)
Remus, H., 1980, 'Planning and measuring program
implementation',
IBM Technical Report TR 03095, June
Walston, C.E. and Felix, C.P., 'A method of programming
measurement
and estimation,' IBM Systems Journal, 16, 5~73

15
Some deeper and
broader perspectives
on evolutionary
delivery and related
technology

Introduction
15.1 Software engineering sources
15.2 Management sources
15.3 Engineering sources
15.4 Architectural sources
15.5 Other sources

266 Software engineering management

¯ Introduction

The objective of this chapter is to show the extent of
understanding of the idea of evolutionary delivery inside and
outside of software engineering, to show that it is not a new or
unappreciated idea.

¯15.1 Software engineering sources

These follow in alphabetical order.

15.1.1 Allman and Stonebraker

Source: Eric Alllnan and Michael Stonebraker, UC Berkeley,
'Observations 011 tlie Evolution o/'a Sojtware Systetn', IEEE
Computer, June 1982, pp. 27-32. (Oc1982 IEEE)

The authors led the development of a 75000 line C database
system, for over six years, in a research environment, but
ultimately having over 150 user sites.

'It seems crucial to choose achievable short-term targets. This
avoids the morale problem related to tasks that appear to go on
forever. The decomposition of long-term goals into manageable

short-term tasks continues to be the main job of the project
directors.
 Short-term goals were often set with the full
knowledge that the longer-term problem was not fully understood,
and were retraced later when the issues were better understood.
The alternative is to refrain from development until the problem
is well understood. We 'found that taking any step often helped
us to correct the course of action. Also, moving in some
direction usually resulted in a higher project morale than a
period of inactivity. In short, it appears more useful to "do
something now even if it is ultimately incorrect" than to only
attempt things when success is assured.
 As a consequence of this philosophy, we take a relaxed
view towards discarding code . . . our philosophy has always
been that "it is never too late to throw everything away."' (p.
28)
 'Our largest mistake was probably in failing to
clearly pinpoint the change from prototype to production
system.' (p. 32)

Deeper perspectives on evolutionary delivery 267

15.1.2 Balzer

Source: Robert Balzer, USC./Information Sciences Institute,
'Program Enhancement', in ACM Software Eng. Notes, August 1986,
Trabuco Cativon Workshop position paper, pI,. 66-67

'There are two reasons for such enhancements. The first is
that no-one has enough insight to build a system correctly
the first time (even assuming no implementation bugs). The
second is that the mere existence of the system, and the
insight gained from its usage, create a demand for new or
altered facilities.'

 Dr llalzer comments on two of the main reasons that the
waterfall model cannot work well in most high-tech environments.
Software is different from hardware in at least one major
respect. It can be more cheaply reproduced (copied, ported,
converted reused). The consequence of this is that, like music
composition, each effort is essentially an attempt to create
something very new. This implies that we are bound to be working
with more unknown factors than the bridge builder. So, we must
have some processes for exploring the unknown, like evolutionary
delivery.

Source: Williatn Swartout and Robert Balzer, USC/Information

Sciences Institute, 'On the Inevitable Intertwining of
Speci'ication and Implementation', Comm. of ACM, July 1987, pp.
438~0

'For several years we and others have been carefully
pointing out how important it is to separate specification
from implementation. . . . Unfortunately, this model is
overly naive, and does not match reality. Specification and
implementation are, in fact, intimately intertwined because
they are, respectively, the already-fixed and the yet-to-
be-done portions of a multi-step development. It is only
because we have allowed this development process to occur
unobserved and unrecorded in people's heads that the multi-
step nature of this process was not more apparent earlier.'
. . . 'Every specification is an implementation of some
other higher level specification. . . many developments
steps . knowingly redefine the specification itself. Our
central argument is that these steps are a crucial
mechanism for elaborating the specification and are
necessarily intertwined with the implementation. By their
very nature they cannot precede the implementation.'(p.438)
'Concrete implementation. . . insight provides the basis
for refining the specification. Such improved insight may
(and usually

268 Software engineering management

does) also arise from actual usage of the implemented system.
These changes reflect (also) changing needs generated by the
existence of the implemented system.' (p. 439)
 'These obseations should not be misinterpreted. We still
believe that it is important to keep unnecessary implementation
decisions out of specifications and we believe that maintenance
should be perfomed by modifying the specification and
reoptimizing the altered definition. These observations indicate
that the specification process is more complex and evolutionary
than previously believed and they raise the question of the
viability of the pervasive vi"w of a specification as a fixed
contract between a client and an implementer.' (p. 439)

15.1.3 Basili and Turner

Source: Victor R. Basi.li, University ofMaryland, and Albert J.
Turner, Clemson University South Carolina, 'Iterative
Enhancement: A Practical Technique for Software Development',

IEEE Trans. on Software
Engineering, December 1975, pp. 390-396. (OC1975 IEEE)

'Building a system using a well-modularized top-down approach
requires that the problem and its solution be well understood.
Even if the implementors have previously undertaken a similar
project, it is still difficult to achieve a good design for a
new system on the first try. Furthermore, the design flaws do
not show up until the implementation is well under way so that
correcting problems can require major effort.
 One practical approach to this problem is to start with a
simple initial implementation of a subset of the problem and
iteratively enhance existing versions until the full system is
implemented. At each step of the process, not only extensions
but also design modifications can be made. In fact, each step
can make use of stepwise refinement in a more effective way as
the system becomes better understood through the iterative
process. This paper discusses the heuristic iterative
enhancement algorithm.' (p. 390)

 They recognize that evolutionary progress is made by a
combination of function ('extensions') and solution ('design
modification') enhancement.

'A "project control list" is created that contains all the tasks
that need to be performed in order to achieve the desired final
documentation. At any given point in the process, the project

Deeper perspectives on evolutionary delivery 269

control list acts as a measure of the "distance" between the
current and final implementations.' (p. 390)
 'The project control list is constantly being revised as a
result of this analysis. This is how redesign and recoding work
their way into the control list. Specific topics for analysis
include such items as the structure, modularity, modifiability,
usability, reliability and efficiency of the current
implementation as well as an assessment of the goals of the
project.' (p. 391)

 From this it is clear there is a dynamic revision of the
design based on a multi-dimensional quality goal analysis. This
is therefore quite close to the method described in this book.
It is worth noting that Basili cites Harlan Mills and Parnas,
both at one time colleagues of his.

'A skeletal subset is one that contains a good sampling of the

key aspects of the problem, that is simple enough to understand
and implement easily, and whose implementation would make a
usable and useful product available to the user.' (p. 391)

 This last sentence is explicit recognition of the value-to-
cost step selection heuristic we recommend.

'The implementation itself should be simple and straightforward
in overall design and straightforward and modular at lower
levels of design and coding so that it can be modified easily in
the iterations leading to the final implementation.' (p. 391).

 This sentence is recognition of the factor that we have
called 'openended design'.

'It is important that each task be conceptually simple enough to
minimize the chance of error in the design and implementation
phases of the process.' (p. 391) 'The existing implementation
should be analyzed 'frequently to determine how well it measures
up to project goals.' (p. 391)

 It is clear that Bas:ili and Turner are of the 'small is
beautiful' school.

 'User reaction should always be solicited and analyzed for
 indications of deficiencies in the existing
implementation.' (p. 391)

 Thus user experience played a major role not only in the
implementation of the software project (i.e. the compiler) but
also in the specification of the project (i.e. the language
design). No doubt that the process is designed to make use of
real user feedback. The authors go into some detail about a case
study and even present a full table of preliminary numbers
regarding the effectiveness of the technique!

270 Software engineering management

'The development of a final product which is easily modified is
a by-product of the, iterative way in which the product is
developed.' (p.395)

 This is explicit recognition of the observation that the
mere use of an evolutionary development process promotes
frequent designer awareness of the practical need for open-ended
and otherwise easily modifiable design.

'Thus, to some extent the efficient use of the iterative
enhancement technique must be tailored to the implementation
environment.' (p. 391)

15.1.4 Boehm: the spiral

Source: Barry W. Boehtji (TRW Defense Systems Group), 'A Spiral
Model of Development and Enhancement', ACM SIGSOFT Software Eng.
Notes,
Vol. 11, No. 4, August 1986, pp. 14-24 (Proceedings of
International Workshop on the Software Process and Software
Environments, Trabuco Canyon CA 27-29 Ma"'ch 1985, ACM Order
592861)

Barry Boehm has a simple 'incremental step' evolutionary
delivery model included in his Software Engineering Economics
book. In 1985 he presented his spiral rnodel to give more detail
to this idea. The spiral model is not, however, in any sense
identical to the evolutionary delivery model explored in this
book. It is, it seems, a framework for including just about any
development model which seems appropriate to the risk levels in
the project at hand, or in particular components at particular
points in the development process. The spiral model could be
viewed as a framework for choosing evolutionary delivery as a
strategy, or deciding not to choose it and to choose a
traditional waterfall model, or other alternative instead. The
spiral model, as befits the author's industrial background in
military and space contracting in the US, shows due
consideration to current political considerations and traditions
or standards to which a large contractor might be subjected. The
spiral model might also offer a politically viable way to
convert from a waterfall model dominated environment into a more
evolutionary environment, without having to make a major formal
shift of direction. Here are Dr Boehm's own words on the
subject:

'The spiral model['s] . . . major distinguishing feature . . .
is that it creates a risk-driven approach for guiding the
software process, rather than a strictly specification-driven or
prototype-driven process.' (p. 14)

Deeper perspectives on evolutionary delivery 271

 'One of the earliest software process models is the
stagewise model (H. D. Benington, 'Production of Large Computer

Programs,' Proc. ONR Symposium 011 Adv. Prog. Meth. for Dig.
Comp., June 1956, pp. 15-27, also available in Annals of the
History of Computing, October 1983, pp. 35~361). This model
recommends that software be developed in successive stages
(operational plan, operational specifications, coding
specifications, coding, parameter testing, assembly testing,
shakedown, system evaluation).' (p. 14)
 'The original treatment of the waterfall model given in
Royce (W.W. Royce, 'Managing the Development of Large Software
Systems: Concepts and Techniques', Proc. WESCON, August 1970.
Reprinted in Proc. 9th International Software Engineering Conf.,
1987, Monterey, Calif., IEEE) provided two primary enhancements
to the stagewise model:

¯ Recognition of the feedback loops between stages, and a

guideline to confine the feedback loops to successive
stages, in order to minimize the expensive rework involved
in feedback across many stages.

¯ An initial incorporation of prototyping in the software
life cycle, via a 'build it twice' step running in parallel
with requirements analysis and design.'

 The waterfall approach was largely consistent with the top-
down structured programming model introduced by Mills (H.D.
Mills, 'TopDown Programming in Large Systems', in Debugging
Techniques in Large Systems, R. Ruskin (ed.), Prentice-Hall,
1971, pp. 12~137). However some attempts to apply these versions
of the waterfall model ran into the following kinds of
difficulties: the 'build it twice' step was unnecessary in some
situations . . . ; The pure top-down approach needed to be
tempered with a 'look ahead' step to cover such issues as high-
risk, low-level elements and reusable or common software
modules.
 These considerations resulted in the risk-management
variant of the waterfall model discussed in B.W. Boehm,
'Software Design and Structuring', (1975) in Practical
Strategies for Developing Large Software Systems, E. Horowitz
(ed.), Addison-Wesley, pp. 10~128 and elaborated in B.W. Boehm,
'Software Engineering', IEEE Trans. Computers, December 1976,
pp. 122~1241. In this variant each step was expanded to include
a validation and verification activity to cover high-risk
elements, reuse considerations, and prototyping. Further
elaborations of the waterfall model covered such practices as
incremental development in J.R. Distaso, 'Software Management: a
Survey of the Practice in 1980', IEEE Proc. September 1980, pp.
110~1119.

272 Software engineering management

 Boehm continues to note further alternatives to the
waterfall model developed to cope with its weaknesses, but he
finds weaknesses with each of these approaches, which he tries
to resolve using the spiral model.

How does the spiral model relate to this book?

Note that Boehm is suggesting doing the kinds of activities
which in this book we would call impact estimation and impact
analysis, highlevel inspection of design, as well as what we
would also try to discover by means of actually delivering small
evolutionary steps, to see how things worked in practice, and to
identify possible risk elements. Boehm suggests that any
appropriate techniques can be used for this risk analysis phase.
His model is open to all useful tools. His basic advice is to
choose the appropriate next step based on 'the relative
magnitude of the program risks, and the relative effectiveness
of the various techn:ques in resolving the risks.'
 I would argue that the evolutionary delivery process
together with the set of software development and software
project management tools and principles in this book is a
complete set of tools for making the decisions about risk which
the spiral model attempts to tackle. I cannot see that tht',
spiral model adds anything necessary to the development process.
This is not to say it is not useful, especially in the
environmental context which Boehm is in where a large
bureaucracy is emerging from the waterfall model situation.
Boehm seems to be trying to 'patch' the existing culture and to
be diplomatic with our professional peers. There is necessary
virtue in this, of course, but it is a subject with which only
some of our readers must contend.

What does the spiral model not specifically incoiporate?

Of course the spiral model, in admitting the use of any ideas,
past, present, or future, doesn't need to specifically
incorporate anything, yet can claim that anything necessary is
acceptable. However I find that the following elements of
evolutionary delivery, as preached in this book are missing from
the spiral model:

¯ The concept of producing the high-value-to-low-cost

increments first. Cumulation of user value. (The spiral
model is so dominated by risk consideration that value

concepts are not directly mentioned, except in the form of
objectives and constraints, ye': risk is risk of not
getting value for money.)

Deeper perspectives on evolutionary delivery 473

¯ The concept of actually handling over to users usable

increments, at 1% to 5% of project total budget.
¯ The concept of intentionally limiting step size to some

maximum cycle of a week, month or quarter of a year.
¯ The concept of constantly being prepared to learn from any

and all of the frequent step deliveries, and in so doing,
being prepared to change any requirement or any technical
design solution necessary in order to satisfy the users'
current real needs.

¯ The concept that productivity is measured by incremental
progress towards and planned increment of either function,
quality or resource reduction.

¯ The concept of opi~'n-ended architecture as a desirable
base for evolution.

15.1.5 Brooks

Source: F.P. Brooks, The Mythical Man-Month, Addison-Wesley,
1975

'Fred Brooks presented some thoughts on the traditional life
cycle, arguing for "growing," rather than building software:
making a skeleton run (attributed to Harlan Mills), and the
progressive refinement of design (Wirth). He suggested that
software projects must be nursed and nurtured, and that you
should plan to throw one version away, even if you do so part by
part. The traditional life cycle was useful primarily for
building batch applications. Today most systems are interactive
and they require changes in the life cycle. The life cycle
should be divided into three segments, with iterations occurring
within each of the segments. The first segment is a requirements
segment, design specification, and user manual. The next segment
is the design, coding of a "minimal driver," and debugging of
this initial skeleton of the application. In the next segment,
functional sub-routines are coded, debugged, and integrated with
the main system.
 Benefits of this approach: it supports a progressive
refinement of specifications which is better suited to
interactive systems. It facilitates the concept of rapid
prototyping and much greater interaction with users. It is
better suited to the idea of "throwaway" code since you can deal

in smaller functional elements and can redo them more easily if
some problem becomes apparent. This approach improves the morale
of the developers since they can see results more quickly and
more directly related to their efforts.' (from Data Processing
Digest, 8/84 p. 11 and System Development, 4, May 84)

274 Software engineering management

15.1.6 Currit, Dyer and Mills IBM FSD

Source: P. Alle,i Curi'it, Michael Dyer and Harlan D. Mills,
'Certijying the
Reliability of Sol'tware', IEEE Trans. on Software Engineering,
Vol. SE-12, No. 1, January 1986,, pp. 3-11. (Qc1986 IEEE).

This work needs to be looked at in light of the work of Mills,
Dyer, and other IBM Federal Systems Division authors in IBM
Systems Journal, (4)1980, reported earlier in this book, on
evolutionary delivery. Their work here shows the slow but
predictable exploitation of the evolutionary delivery method
(they prefer the term 'incremental development' as they are not
releasing software to their real users at each increment) to
control other aspects (in this case reliability) than the time
and cost factors which dominated their earlier work.

'This paper describes a procedure for certifying the reliability
of software before its release to users. The ingredients of this
procedure are a life cycle of executable product increments,
representative statistical testing, and a standard estimate of
the MTTF (mean time to failure) of the product at the time of
its release.
 The traditional life cycle of software development uses
several defect removal stages of requirements, design,
implementation, and testing but is inconclusive in establishing
product reliability. No matter how many errors are removed
during this process, no one knows how' many remain. In fact, the
number of remaining errors tends to be academic to product users
who are more interested in knowing how reliable the software
will be in operation, in particular how long it runs before it
fails, and what are the operational impacts (e.g. downtime) when
it fails.
 On the other hand, the times between successive failures of
the software as measured with user representative testing are
numbers of direct management significance. The higher these
inter-fail times are, the more user satisfaction can be
expected. In fact, increasing inter-fail times represents
progress towards a reliable product, whereas increasing defect

discovery may be a symptom of an unreliable product.
 To remove the gamble from software product release, a
different life cycle for software development is suggested in
which the formal certification of the software's reliability is
a critical objective. Rather than considering product design,
implementation, and testing as sequential elements in the life
cycle, product development is considered as a sequence of
executable product increments. . . . A life cycle organized
about the incremental

Deeper perspectives on evolutionary delivery 275

development of the product is proposed as follows: . . .
increments (and product releases) accumulate over the life cycle
into the final product.'

 They suggest the use of an 'independent test group' who
will be 'responsible for certifying the reliability of the
increments . . .' This independent test group has the character
of a user group, and indeed could be a real user of some
friendly nature. They then go on to point out that they
recommend testing from the standpoint of user frequency of
operations.
 They are aware of the narrow scope of their activity:
'There will be other properties - such as modularity or
portability - that are not considered.' By modularity they
probably intend to refer to modifiability and with typical
current confusion of ends and means, mention one solution to it,
modularity.
 The article deserves to be read in its entirety by any
serious manager of software engineering. My main point in
quoting it here is to point out how the evolutionary delivery
cycle can be combined with reliability management.
 It seems obvious that any attribute of the system can be
similarly controlled. It also is clear that the reader may
choose to deliver increments directly to some real users at each
increment, rather than to an independent in-house certification
test team.

15.1.7 Dahle and Magnusson

Source: Swedish language article in Nordisk Datanytt 17/86 pp.
40-13, 'Programmeringsomgivninger' (Software Environments), by
Hans Petter Dahle (Inst. for Informatikk, University of Oslo),

and Boris Magnusson (Lund's Engineering University)

Resources: an English report Mj0lner - 'A Highly Efficient
Programming Environment for Industrial Use,' edited by H. P.
Dahle et al., Mjalner Report No. 1, available from Norsk
Regnesentral, Forskningsveien lb, Blindern, Oslo 3, Norway

Here is my translation of their remarks concerning evolutionary
delivery:

'In traditional development environments we have created methods
based on a "batch" mentality. These use names like "life cycle
model" and "the waterfall model".

 In each step one or more documents are produced which are
then

276 Software engineering management

REQUIREMENTS ANALYSIS
 REQUIREMENTS SPECIFICATION
 SYSTEM DESIGN
 IMPLEMENTATION
 TESTING
 MAINTENANCE
 TERMINATION
The traditional software development model

used as the input to the next step. This model is coupled at
times with more or less formal methods being used at each
individual step. The model has been shown to bear fruit for
problems which admit formalization, which can be specified in a
formal language, which - in other words - can be fully
understood in all its components.
 The method is less useful for situations where the
requirements are less clearly specified, for example by an
inexperienced customer, or by vague specifications such as "the
response time shall be satisfactory." The non-formalized
requirements get discovered late in the development process. A
completely different problem is that a change involves updating
of a number of documents - which is often a time-waster and an
unpleasant job which doesn't always get done.
 The first integrated software development environments were
developed at research centers. The environments usually
supported a particular programming language. Smalltalk and
Interlisp were among the first complete program development
environments, both developed at Xerox Palo Alto Research Center.

 These and similar systems are coupled to a software
development model which aims to get an early "prototype" of the
object system operational with limited function. On the basis of
experience from using the prototype, one can incrementally
improve and finally deliver a product which satisfies the
(ultimately) clarified requirements. This method is occasionally
called "explorative programming."
 The fact that the software can have bugs is considered of
less importance than the ability to try out changes.
 This working environment is very fruitful when solving
problems which are not perfectly defined, and where all
requirements can not be formally specified.
 Of course the methods can be combined. A prototype can be
made initially to map the requirements, and the traditional
development model can be used to produce a final version.'
 Deeper perspectives on evolutionary delivery 277
 This quotation is from a fairly narrow context of advanced
programming environments. It is included because it recognizes
explicitly the need for an evolutionary delivery model of some
kind.

15.1.8 Dyer

Source: Michael Dyer, IBM Federal Systems Division, 'Software
Development Processes', IBM Systems Journal, Vol. 19, No. 4,
1980, pp. 4S1~6S

Michael Dyer is one of the core team led by Harlan Mills which
implemented evolutionary delivery, and reported it in public
literature, on a larger industrial scale than any other group.
Here are some quotations from his article which shed additional
light on the exact process used.

'Each increment is a subset of the planned product.' (p.
458) 'The software for each increment is instrumented for
measurement of such system resources as primary and secondary
storage utilization.' (p. 459)
 'As these actual performance measurements become available,
software simulations that may have been initialized with
estimates should be continually calibrated to enhance their
fidelity.' (p. 459)

 This recommendation is a direct reference to the ability of
evolutionary delivery to improve our estimating and prediction
capability. It was also used in reliability estimation in later
years (see Currit, in this chapter).

'Software integration plans are recorded in controlled documents
containing the following minimum information:

¯ scheduled phasing of the integration increments;
¯ system functions included in each increment;
¯ test plans to be executed for each increment . .

¯ support requirements for each increment in terms of system

hardware simulation, tools and project resources;
¯ criteria for demonstrating that the increment is ready for

integration . . . the exit condition from the unit test;
quality assurance plans for the tracking and follow-up of
errors discovered during the integration process.' (p. 462)

 'A group separate from the software developers should have
responsibility for planning the software integration process,
for developing the integration procedures, and for integrating
the software according to these procedures.' (p. 463)

278 Software engineering management

 'Control is achieved by careful system partitioning,
incremental product construction, and constant product
evaluation.' (p. 465)

15.1.9 Eason

Source: Ken Eason, HUSAT, Loughborough, UK, 'Methodological
Issues in the Study of Human Factors in Teleinjormatic Systems',
Behaviour and
Information Technology, ~ylor & Francis, UK, 1983, Vol. 2, No.
1, pp. 357-364

'One of the best ways of achieving action research and active
collaboration be.ween technical and social scientists is to
follow an evolutionary process of design . . . In this process
early versions of the system are implemented, user responses
assessed, the system revised, enhanc"d, etc. the new version
implemented. . . . If this iterative process is not present in
design the result will probably be that technical staff dominate
design and, subsequently, evaluations are conducted by human and
social scientists. The latter will consequently have no impact
on the former.' (p. 363)

15.1.10 Gilb

Source: T. Gilb, Software Metrics, October 1976, (Winthrop).

'Evolution is a designed characteristic of a system development
which involves gradual stepwise change.' (p. 214)

On step results measurement and retreat possibility

'A complex system will be most successful if it is implemented
in small steps and if each step has a clear measure of
successful achievement as well as a "retreat" possibility to a
previous successful step upon failure.' (p. 214)

On minimizing failure risk, using feedback, correcting design
errors

'The advantage is that you cannot have large failures. You have
the opportunity of receiving some feedback from the real world
before throwing in all resources intended for a system, and you
can correct possible design errors before they become costly
live systems.' (p. 214)

Deeper perspectives on evolutionary delivery 279

On total project time

'The disadvantage is that you may sometimes have to wait longer
before the whole system is functioning. This is offset by the
fact that some results are produced much earlier than they would
be if you had to wait for total system completion. It is also
important to distinguish between a date for total system
operation and a date for total "successful" system operation.'
(p. 215)

On the general applicability

'Many people claim that their system cannot be put into
operation gradually. It is all or nothing. This may conceivably
be true in a few cases . . . I think we shall find that
virtually all systems can be fruitfully put-in in more than one
step, even though some must inevitably take larger steps than

others.' (p. 215)

A measure of degree of ez'olution

'A metric for evolution is degree of change to system "5" during
any time interval "t".' (p. 214)

On risk and predicting requirements

'Risk estimates plus/minus worst case are key to selection of
step size', and 'Saving of analysis of future real world'. (p.
217)

 The first remark is recognition that step sizing is
determined by the need to control risk of failure. It is not
small steps in themselves which are important. A large step may
be taken if the risk is under control; for example by using
contract guarantees or known technology. The second remark is
recognition that the evolutionary method avoids the need to
predict requirements and environments in the future; it allows
us to wait until the future has arrived, to see the current
requirements and the current environment.

On the scientific experiment analogy

'The concept of stability (where evolution is a technique for
achieving stability) at individual levels of a system has the
same usefulness as the concept of keeping all-factorsexcept~one
constant in a scientific experiment. It allows systematic and
orderly change of systems where the cause and effect may be more
accurately measured without interfering factors, which may cause
doubt as to the reason for good or bad results.' (p. 217)

280 Software engineering management

 'Systems may be specifically designed to go through a
revolution in several phases, where only one level of the system
is changed significantly at a time.' (pp. 217-8)

Evolutionary modularitq design: conflict and priority

On p. 187 I raised the issue of 'Modularity division criteria',
and gave six examples of rules for dividing software modules.
Rule six was 'By calendar schedule of need of module' and the

explanation for this rule was: 'Early implementation;
evolutionary project develop.'
 'Each rule ca conflict with other modularization rules and
with other design criteria. Resolution of the conflict can be
achieved by a clearly stated set of priorities'.

 This is a forerunner to the present perception of step
design and selection being basec\ on those elements of the total
system which will contribute the greatest value towards stated
objectives at the least development resource cost.

Later writings on the subject

The evolutionary idea was developed by articles in the trade
press: 'Evolutionary Planning and Delivery: an Alternative',
Computer Weekly, 2 August 1979; 'Evolutionary Planning can
prevent Failures', Computer Data, Canada, April 1979, p. 13;
'Realistic Time/Cost Data', Computer Weekly, 16 August 1979;
'Eleven Guidelines for Evolutionary Design and Implementation',
Computer Weekly, 12 March 1981; and 'The Seventh Principle of
Technology Projects: Small Steps will Result in Earlier
Success', Com,vuter Weekly, 30 July 1981. In all there were
about 122 Gilb's Mythodology Columns in Computer Weekly, which
developed many of the ideas in this book.

15.1.11 Glass

Source: Robert L. Glass, 'An Elementary Discussion of
Compilerhnterpreter Writing', ACM Computing Surveys, Vol. 1, No.
1, March 1969,
pp. 55-77

'Chronological Development
In the case of the SPLINTER interpreter, two facts dominated the
chronology:

1. The processor was to be developed incrementally.

Deeper perspectives on evolutionary delivery 28 I

2. Some of the building blocks were available from other,

previously developed processors.

The first fact meant that the initial development goal was to
reach a minimally usable level of implementation in a minimal
amount of time. The assumption was that with a well-modularized

system design, the clutter which often comes with systems
development conducted in this add-on fashion could be avoided.'
(p. 65)
 'It is the opinion of this author that incremental
development is worthwhile. Reaching system usability early in
development leads to a more thorough shakedown, avoids
implementer and management discouragement and/or disinterest,
and allows the user to get "on the air" in minimum time. . . .
However, incremental development demands careful planning of the
basics, especially table and list formats and modular
construction, if it is to avoid resembling a house made of a
packing case with rooms tacked on helter-skelter as they become
needed.' (p. 68)

Open-endedness and the original 'stub'

'The SPLINTER processor has been built incrementally via an
open-ended design process. Because of this there are always
loose ends in the system that have not been implemented. lMPDEL,
a general purpose subroutine, magically handles all these
problems. (lMPDEL merely prints IMPLEMENTATION DELAYED as a
diagnostic and returns control to the normal logic stream).' (p.
73)

 This paper is particularly interesting because of its early
date, beating even Basili and Turner by six years. It must be
one of the earliest clear published recognitions of evolutionary
delivery methods in the computer business.

15.1.12 Jackson and McCracken

Source: Michael A. Jackson and Daniel D. McCracken, 'Life Cycle
Concept Considered Harmfil', ACM Software Eng. Notes, Vol. 7,
No. 2, April
1982, pp. 29-32

At a conference in September 1980 (at Georgia State University),
these two well-known authors developed a 'minority dissenting
position,' which eventually became this paper.

'To contend that any life cycle scheme, even with variations,
can be applied to all system development is either to fly in the
face of

282 Software engineering management

reality or to assume a life cycle so rudimentary as to be
vacuous. (p. 30)
 'The life cycle concept perpetuates our failure so far, as
an industry, to build an effective bridge across the
communications gap between end-user and systems analyst. In many
ways it constrains future thinking to fit the mold created in
response to failures of the past.' (p. 30)
 'It ignores . . . an increasing awareness that systems
requirements cannot ever be stated fully in advance, not even in
principle, because the user doesn't even know them in advance -
not even in principle.' (p. 31)
 'We suggest an analogy with the Heisenberg Uncertainty
Principle: any system development activity inevitably changes
the environment out of which the need for the system arose.' (p.
31)

 The authors eloquently point out that the life cycle is
obsolete. They do so at a time when most others are starting to
adopt the idea. They do not suggest a particular remedy.

15.1.13 Jahnichen and Coos

Source: Stefan Jahnichen and G. Goos. GMD Research Center.
Karlsruhe, 'Towards an Alternative Model for Software
Developments', ACM Software Eng. Notes, August 1986, pp. 36-38

This paper proposes a novel idea.

'We therefore propose to view the process of software
construction as a network in which each node represents the
product in a certain state and each edge is an action
(transition) to transform one state into another. Alternative
actions are mode/led by multiple edges originating from the same
node. Whenever a state is inconsistent [with objectives] a
backtracking takes place which leads to the previous state where
alternative paths are possible, which have not be'n tried. As
the information on alternatives is part of a node's properties,
the node cannot be disconnected from any previous node and the
full development history remains stable and consistent.' (p. 37)

15.1.14 Krzanik

Source: Lech Krzanik, 'Dynamic Optimization of Delivery Step

Structure in Evolutionary Project Delivery Planning', Proc.
Cybernetics in

Deeper perspectives on evolutionary delivery 283

Organization and Management, 7th European Meeting, Vienna 24-27
April 1984, R. Trappl 'ed.), North-Holland, 1984
Dr Krzanik has since 1980 worked on the automation of our Design
by Objectives methods on personal computers. The objective of
that research effort is to see how far the software engineering
design process can be automated. The current implementation of
the tool, the 'Aspect Engine,' operates in Pascal on the
Macintosh and is shared with suitable research colleagues.
Krzanik, in writing this paper, is in fact preparing for his own
implementation of fully automated evolutionary step size
selection. The author's conclusion includes:

'An approach to delivery step structure optimization in
evolutionary project delivery has been presented. A model and
two simple and easy-to-use optimal algorithms Mt and '//'Ml for
controlling the contents of the project transient set have been
given. Elsewhere ('On-line tuning of the smallest useful
deliverable policy in evolutionary delivery planning,' 1983) we
have given alternative methods for simultaneous optimization of
delivery schedule, step range and structure.'

 For the management reader, this means that one day you may
be offered personal computer tools for dealing with evolutionary
planning. For the academic reader, it implies that there is a
fairly unexplored mathematical area out there and that
evolutionary delivery is capable of formal treatment.

15.1.15 Lehman and Belady

Source: M.M. Lehman and L.A. Belady, Program Evolution:
Processes of
Software Change, Acadetnic Press, 1985; originally published ill
Journal of Systems and Software, Vol. 1, No. 3, 1980 'Qc 1980
Elsevier Science Publishing Co, Inc.)

This text and the research of the authors cannot be ignored in
any overview of software engineering evolution. In one sense it
is outside of the scope of our text because it takes an
anthropological study view of program evolution, while this
book's main subject matter is in management of the development
process. The exploitation of specific evolutionary delivery

mechanisms in order to achieve specific management targets is
our subject. However, the reader is bound to find much of the
material rich in ideas and insights. The authors primarily
depart from their own well-known studies of the evolution of the
IBM 360 Operating System (1969, IBM Research Report RC 2722, The
Programming Process, M.M. Lehman).
Since this book is fond of trying to state principles, it is
fitting that

284 Software engineering management

we introduce this work to the reader by citing some they have
derived from their studies. These were apparently first
formulated in 1974.

Continuing change

'A program that is used and that, as an implementation of its
specification, reflects some other reality, undergoes continuing
change or becomes progressively less useful. The change or decay
process continues until it is judged more cost effective to
replace the program with a recreated version.' (p. 381)

This can be compared with Gilb's Fourth 'Law':

'A system tends lo grow in steps of complexity rather than of
simplification; this continues until the resulting unreliability
becomes intolerable.'

This Law was first published in Gilb, Reliable Data Systems,
1971, Universitetsforlaget, Oslo, and in Datamation, March 1975,
and in Gilb, Reliable EDP Application Design, 1973, Petrocelli.
It was later used in Gilb and Weinberg, Humanized Input, 1984,
QED Inc., Waltham, Mass.

Increasing complee::'ity

'As an evolving program is continuously changed, its complexity,
reflecting deteriorating structure, increases unless work is
done to maintain it or reduce it.' (p. 381)

7hejundamental law (of program evolution)

'Program evolution is subject to a dynamics which makes the

programming process, and hence measures of global project and
system attributes, self-regulating with statistically
determinable trends and invariances.' (p. 381)

Conservation of organization stability (invariant work rated)

'The global activity rate in a project supporting an evolving
program is statistically invariant.' (p. 381)

Conservation offamiliarity (perceived complexity)

'The release content (changes, additions, deletions) of
successive releases of an evolving program is statistically
invariant.' (p. 381)

The authors provide comment and data to support their Laws.

Deeper perspectives on evolutionary delivery 285

 A current source of Lehman's work more in line with our
interest in the development process itself will be found in ACM
Software Engineering Notes, Aug. 1986, 'Approach to a
Disciplined Development Process - the lSTAR Integrated Project
Support Environment,' pp. 2~3. A co-operative project with
British Telecom, it stresses a 'contractural model of system
development.'

15.1.16 Melichar

Source: Paul R. Melichar, IBM Information Systems Management
Institute, Chicago, 'Management Strategies for High-risk
Projects', Class Handout,
approx. 1983

Melichar identifies three project strategies, monolithic,
incremental, and evolutionary, which are 'different in their
ability to cope with risks that undermine manageability, because
they reflect different attitudes towards: productivity. . .
responsiveness . . . adaptability and .
control.'

'Projects get into trouble precisely because managers treat them
as if they were all alike, disregarding three vital factors that

impact manageability: duration . . . expectations and . . .
volatility.'

 Using an IBM study his organization carried out, Melichar
goes into depth on optimum project length before delivering
meaningful results to the user.

'This testimony strongly suggests that there is a narrow six to
twelve month "time window" for optimum manageability. A good
rule of the thumb is nine months.'

 His distinction between monolithic, incremental and
evolutionary system development strategies is argued with case
studies and comparative tables, in favor of the latter two
options. His incremental strategy is what we have defined as an
evolutionary delivery strategy. What he calls evolutionary is
what most people would call 'usable prototypes, made by the
users themselves', as opposed to professional developers. I
would personally not make the distinction, since both options
are valid strategies under the evolutionary umbrella. Indeed
there is nothing to inhibit us from mixing such strategies
within a project. Terminology, is a minor issue. He is bringing
the nonmonolithic development options to the attention of his
students in a lively and deeply analytical manner.

286 Software engineering management

15.1.17 Parnas

Soitrce: David L. Parnas, 'Designing Software for Ease of
Extension and
Contraction', IEEE Trans. on Software Engineering, Vol. SE-5,
No. 2, March 1979. (Qc 1979 IEEE)

'Software engineers have not been trained to design for change.
(p. 129)
 'In my experience identification of the potentially
desirable subsets is a demanding intellectual exercise in which
one first searches for the minimal subset that might conceivably
perform a useful service and then searches for a set of minimal
increments to the system. Each increment is small - sometimes so
small that it seems trivial. The emphasis on minimality stems
from our desire to avoid components that perform more than one
function. Identifying the minimal subset is difficult because
the minimal system is not usually one that anyone would ask for.
If we are going to build the software family, the minimal subset
is useful; it is not usually worth building by itself. Similarly

the maximum flexibility ("easily changed") is obtained by
looking for the smallest possible increments in capability . .
.' (p. 130)
 'There is no reason to accomplish the transformation . . .
(to) all of the desired features in a single leap. Instead we
will use the machine at hand to implement a few new
instructions. At each step we take advantage of the newly
introduced features. Such a step-by-step appr'~ach turns a large
problem into a set of small ones and . . . eases the problem of
finding the appropriate subsets. Each element in this series . .
. is a useful subset of the system. (p. 131)
 'Subsetability is needed, not just to meet a variety of
customers' needs, but to provide a fail-safe way of handling
schedule slippage.' (p. 136)

Parnas has also said in a private communication:

'There are lots of people preaching evolutionary delivery. For a
few of those whose content is more than mere exhortation, see
Habermann (Modularization and Hierarchy, CACM, Vol. 5, 1976),
Liskov (The Design of the Venus Operating System, CACM, July
1975), Dijkstra (The Structure of T.H.E. -multiprogramming
system, CACM, May 1968, and CACM, August 1975), Per Brinch-
Hansen (The Nucleus ofa Multiprogramming System, CACM, April
1970),
P.A. Janson (Using Type Extension to Organize Virtual Memory,
MITLTS-TR167, September 1976).'

Deeper perspectives on evolutionary delivery 287

15.1.18 Quinnan

Source: Robert E. Quinnan, 'Software Engineering Management
Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
466~77

Quinnan describes the process control loop used by IBM FSD to
ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to
technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design,
development, and managerial practices are applied in an
integrated way to ensure that software technical management is
consistent with cost management. The method [illustrated in this
book by Figure 7.10] consists of developing a design, estimating
its cost, and ensuring that the design is cost-effective.' (p.
473)

 He goes on to describe a design iteration process trying to
meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is
achieved for a single increment, the 'development of each
increment can proceed concurrently with the program design of
the others.'

'Design is an iterative process in which each design level is a
refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost
estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single
increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the
probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an
estimate to complete the remaining increments is computed.' (p.
474)

 This article is far richer than our few selected quotations
can tell in concepts of cost estimation and control.

15.1.19 Radice

Source: Ron A. Radice et al., A Programming Process
Architecture, IBM Systems Journal, Vol. 24, No. 2,1985, pp. 79-
90

288 Software engineering management _____________________

Radice and his team have developed a model of software
engineering management which has been voluntarily adopted as a
basis by many IBM development laboratories. It is partly based
on the best practices of several laboratories in the past. The
central idea of the method is that IBM should not establish the
particular programming languages and software tools to be used
corporate-wide at all. They should rather give the laboratories
a framework for making their own decisions on the particular
tools to be applied to particular product developments at
particular times.
 The idea is that software engineering should be based on a

'process control idea.' Subsidiary support ideas are that
Fagan's inspection method should be used to collect basic data
about the development process. In addition, the driving force
should be measurable multidimensional objectives (using Gilb's
method).

 'An underlying theme of the architecture process is a focus
on process control through process management activities. Each
stage of the process includes explicit process management
activities that emphasize product and process data capture,
analysis and feedback.' (p. 83)
 'Indeed, to achieve consistently improving quality, the
management practices of goal setting, measurement, evaluation,
and feedback are an absolutely essential part of the process.'
(p.82)

 The actual selection of particular software development
languages and tools is thus evolutionary. IBM is using a very
conscious application of evolutionary delivery to deliver
improvement to their individual laboratories' development
process.
 Some further quotations from that article follow:

 'Just as timely data are needed to manage the quality of
the developing product, historical data are required to evaluate
and correct weaknesses in the process over a succession of
projects.' (p. 88)
 'The (IBM) Process Architecture emphasizes quality over
productivity, with the understanding that as quality improves,
productivity will ollow.' (p. 88)
 'Early quality goal setting and evaluations can lead to an
earlier focus on areas of initial high difficulty. As a result,
better initial allocation of key personnel and other resources
can follow.' (p. 88)

 It is my personal opinion that the work of the IBM team is
a very important set of ideas for other people trying to
organize their software engineering process for the long term.
Earlier efforts in our field concentrated on the 'product
development itself, or upon the tools for

Deeper perspectives on evolutionary delivery 289

making that product. Radice and his team have given us a
framework for making those more short term decisions, based on a
rich process control architecture for the entire development
process. The paper is so rich in ideas that the serious reader

should read the complete paper.

15.1.20 Robertson and Secor

Source: Leonard B. Robertson and Glenn A. Secor, AT&T,
'Effective Management of Software Development', AT&T Technical
Journal, Marchl April 1986, Vol. 65, Issue 2, pp. 9~01. 'QC1986
AT&T)

'Large projects usually have more success by spreading releases
over time. Development strategy addresses the same issue
internally: one delivery to the test organization or several
incremental deliveries. Projects in which the interval from
design through unit test is longer than four to six weeks should
use incremental development.' (p. 96)
 'In addition, quality goals and quality improvement goals
should be stated.' (p. 96)
 'Testing should start during the requirements phase and
should use an independent system test group, test inspections,
and frequent demonstrations.' (p. 97)
 'To provide for the unexpected, the development plan should
include a contingency plan, which may involve having increments
only partially full, or an extra increment following a risky
increment.' (p. 96)
 'At the end of each project review meeting, supervision
should see a demonstration of completed increments.
Demonstrations, more than any other approach, make mileposts
visible.' (p. 100)

15.1.21 Rzevski

Source: Leonard B. Robertson and Glenn A. Secor, AT&T,
'Effective Management of Software Development', AT&T Technical
Journal, March/April 1986, Vol. 65, Issue 2, pp. 9~1 01. 'QC1
986 AT&T)

The evolutionary design methodology

'The evolutionary design methodology (EDM) is a body of
knowledge aimed to help designers to:

1. identify and formulate design problems,
2. establish design goals,

290 Software engineering management

3. understand the design process,
4. select and apply methods for design and management.

 The word "evolutionary" in the title indicates that EDM
gives prominence to design methods that allow systems to grow in
an incremental fashion and thus enable both user and designers
to learn as they take part in the design process. It also
indicates that EDM evolves and changes with time.'

 Rzevski's detailed picture of the EDM method, which he uses
primarily as a teaching vehicle, not as a publicly marketed
methodology, emerges as essentially similar in objectives and
nature - though not exact detail - to the methods in this book
(which I collectively call design by objectives [DBO]). He
simply chooses to view the set of sub-methods he teaches from
the evolutionary point of view, while I prefer to think of my
methods primarily in terms of the design objectives to be
attained, and evolutionary delivery is but one tool for reaching
those objectives.

'There are two major objectives of EDM; firstly to increase
productivity of the design process, and secondly to achieve the
desired quality of the design product.'

 In his detailed treatment of quality it is clear that
Rzevski has a very broad multidimensional and quantitative view
of quality -including for example 'social acceptability.'

'EDM can cope with a variety of types of design problems
including those characterized by fuzziness and complexity.'

 This specific willingness to deal with fuzziness is a clear
sign that Rzevski is of the real word. Indeed he is also an
active industrial consultant. He is clc,ser in his thinking to
my ideas than perhaps any other author cited here.

'Systems whose requirements are rather complex or fuzzy should
not be designed and implemented in one step. It is wiser to
allow them to evolve and thus enable both users and designers to
learn as design progresses.

This gives explicit recognition of the necessary learning

process.

'It is advisable to produce solutions that are easy to modify or
replace.

 I take this as recognition of the necessity for open-ended
design solutions discussed earlier in this book.

Deeper perspectives on evolutionary delivery 291

Additional Source: G. Rzevski, 'Prototypes versus Pilot Systems:
Strategies for Evolutionary Information System Development', in
Approaches to Prototyping, Budde et al. (eds.), Springer-Verlag,
1984

Rzevski on Popper and evolutionary knowledge growth

'According to Popper (K.R. Popper, Objective Knowledge, an
Evolutionary Approach, Oxford University Press, 1972) human
knowledge grows by means of never-ending evolution. The vehicle
for this growth is the process of problem solving: we create
theories (i. e. knowledge) in order to solve problems; however,
every solution to a problem creates new problems which arise
from our own creative activity . . . they emerge autonomously
from the field of new relationships which we cannot help
bringing into existence with every action, however little we
intend to do so.
 The inevitable growth of knowledge which takes place during
systems development should not be suppressed by imposing linear
life-cycle discipline upon the development process. On the
contrary, every effort should be made to take advantage of the
human propensity to learn. .

Kuhn's paradigm theory

T.S. Kuhn (The Structure of Scientific Revolutions, University
of Chicago Press, 1970) has a theory of revolutionary growth of
knowledge -which needs to be balanced against Popper's ideas. It
can be summarized as follows:

'Knowledge grows through the work of scientists who organize
themselves into different disciplines . . . solving problems
within the framework of a dominant paradigm. . . . Over a period
of time problems emerge which cannot be solved within the
established paradigm . . . new paradigms are proposed . . . one
. . . emerges as the main challenge to the established order . .
. transfer to a new paradigm occurs . . . only after

considerable resistance . from. . . established . . . members .
. . who do not accept that there is a need for change. . . .
Scientific argument and feuds are typical for those periods
preceding the revolutionary change of the dominant scientific
world view. . . . The evolutionary approach. . . offers. . . a
new paradigm. . .

15.1.22 Sachs

Source: Susan Lammers, Programmers at Work, Microsoft Press (USA
and Canada), Penguin Books elsewhere, 1986 (Qc 1986 by Microsoft
Press. All rights reserved)

292 Software engineering management

Jonathan Sachs wrote the best-selling Lotus 1-2-3 software. In
his interview in Programtners at Work, he cites several
evolutionary viewpoints:

'The spreadsheet was already done, and within a month I had
converted it over to C. Then it started evolving from that point
on, a little at a time. In fact, the original idea was very
different from from what ended up as the final version of 1-2-
3.' (p. 166)
 'The methodology we used to develop 1-2-3 began with a
working program, and it continued to be a working program
throughout its development. I had an office in Hopkinton where I
lived at the time, and I came to the office about once a week
and brought in a new version. I fixed any bugs immediately in
the next version. Also, people at Lotus were using the program
continuously. This was the exact opposite of the standard method
for developing a big program, where you spend a lot of time and
work up a functional spec., do a modular decomposition, give
each piece to a bunch of people, and integrate the pieces when
they're all done. The problem with that method is that you don't
get a working program until the very end. If you know exactly
what you want to do, that method is fine. But when you're doing
something new, all kinds of problems crop up that you just don't
anticipate. In any case our method meant that once we had
reached a certain point in development, we could ship if we
wanted to. The program may not have had all the features, but we
knew it would work.' (p. 167).

 Sachs then goes on to remark that this method 'doesn't work
very well' with more than one to three people! A conclusion that
must be based on the wrong experiences or none at all, as the

documented large-scale cases in this book evidence.
Sachs continues:

'Success comes from doing the same thing over and over again;
each time you learn a little bit and you do it a little better
the next time.' (p. 170)

 Sachs even touches on open-endedness when asked to describe
his basic approach to programming.

'First, I start out with a basic program framework, which I keep
adding to. Also I 11ry not to use many fancy features in a
language or a program. . . . As a rule I like to keep programs
simple.'

Deeper perspectives on evolutionary delivery 293

15.1.23 Shneiderman

Source: Ben Shneiderman, Designing the User Interface:
Strategies for Effective Human-Computer Interaction, Addison-
Wesley, 1987

'Designs must be validated through pilot and acceptance tests
that can also provide a finer understanding of user skills and
capabilities.' (p. 390)

Iterative design during development

Design is inherently creative and unpredictable. Interactive
system designers must blend a thorough knowledge of technical
feasibility with a mystical esthetic sense of what will be
attractive to users. Carroll and Rosson ('Usability
specifications as a tool in iterative development', in H. Rex
(ed.), Advances in Human-Computer Interaction 1, Ablex
Publishing, Norwood NJ, 1985) characterize design this way:

¯ 'Design is a process: it is not a state and cannot
adequately be represented statically.
¯ The design process is non-hierarchical; it is neither
strictly bottom-up nor strictly top-down.
¯ The process is radically transformational; it involves the
development of partial and interim solutions that may ultimately
play no role in the final design.
¯ Design intrinsically involves the discovery of new goals.

These characterizations of design convey the dynamic nature of
the process.' (p. 391)

,15.2 Management sources

15.2.1 Garfield

Source: Charles Garfteld, Peak Performers, William Morrow & Co.,
Inc., NY, 1986

'Many of the major changes in history have come about through
successive small innovations, most of them anonymous. Our
dramatic sense (or superficiality) leads us to seek out "the man
who started it all" and to heap upon his shoulders the whole
credit for a prolonged, diffuse and infinitely complex process.
It is essential that we outgrow this immature conception. Some
of our most difficult problems today . . . defy correction by
any single

294 Software engineering management

dramatic solution. They will yield, if at all, only to a whole
series of innovations.'
(Quoting John Gardner, founder of 'Common Cause' p. 128
 'Again and again, we see results emerging from the many
jobs that take meaning from - and give form to - a few
strategies. Lawrence Gilson, a former vice-president of Amtrak,
is one of a group that worked to build a high-speed "bullet
train" railroad in the United States. The odds, as it turned
out, proved too great even for peak performers. But it was a
near thing: the Japanese government cooperated; Wall Street gave
it a serious look; builders invested $1 million of their own
money. Investors were not putting their money into a fuzzy R&D
project. Gilson knew that "you have to know what the three or
four steps out in front of you are. You have to set milestones
that are achievable. You can't expect someone to come in on the
basis of being sold the big picture. You have to sell each
incremental step. What you bring to them at each phase is not
just conceptual, it is work completed."
 Visionaries who were less than peak performers in handling
incremental steps might have failed to get the project out of
the dream stage, or ight have deluded themselves that they could
continue when the fact was they could not. Gilson and his

partners raised $10 million toward the $3.1 billion project.
They knew they would need another $50 million in risk capital to
keep operating until the planned beginning of construction in
1985. They had done their detail work. When they saw that the
$50 million was not going to come in by the time they had to
have it, they knew it was time to quit, and sold their
engineering plans to Amtrak. The peak performer"'. perspective
not only lets you know when to continue. It also lets you know
when to stop.' (p. 129)
 'Through repeated educated risks, the peak performers learn
as they go along,. and over time their confidence in their own
judgement gains strength. It is not fear of failure that drives
them along, but a strong desire for achievement.
 Remember Warren Bennis's finding that the ninety leaders he
interviewed would use almost any word - "glitch", "false start",
"bug" - rather tItan "failure". The reason goes beyond
semantics. It has to do with learning. When high achievers get
less than the results they plan for and work toward, they allow
the normal human feelings of disappointment, or anger, or
fatigue, to pass; then they start analyzing. They search for
information in the situation: Where are we now? Where are we
headed? How do we get there? They operate as both innovator and
consolidator, and resume moving towards completion of their
mission and goals.
 Even when circumstances are totally beyond their control,

Deeper perspectives on evolutionary delivery 295

peak performers learn what they can from an experience so as not
to knock their heads against the wall again. They keep their
eyes open so that they do not, as mythologist Joseph Campell
once put it, "get to the top of the ladder and find it's the
wrong wall."' (p. 138)

 This activity is clearly identical to the evolutionary
delivery pattern of working towards well defined objectives.

15.2.2 Grove

Source: Andrew S. Grove, Intel Chairman and Founder, High Output
Management, Souvenir Press (UK), Random House (USA), 1983

'How far ahead should the planners look? At Intel, we put
ourselves through an annual long-range planning effort in which
we examine our future five years off. But what is really being
influenced here? It is the next year - and only the next year.

We will have another chance to replan the second of the five
years in the next year's long-range planning meeting, when that
year will become the first year of the five.
 So, keep in mind that you implement only a portion of a
plan that lies within the time window between now and the next
time you go through the exercise. Everything else you can look
at again.
 We should also be careful not to plan too frequently,
allowing ourselves time to judge the impact of the decisions we
made and to determine whether our decisions were on the right
track or not. In other words, we need the feedback that will be
indispensible to our planning the next time around.'

 This statement is similar to the evolutionary delivery
philosophy of keeping the steps beyond the next one as fluid
planning elements, to be finally decided on in the light of real
experience.

15.2.3 Moss Kanter and Quinn
Source: Rosabeth Moss Kanter, The Changemasters, copyright Qc
1983. Reprinted by permission of Simon & Schuster, Inc.

'The most saleable projects are likely to be trial-able (can be
demonstrated in a pilot basis); reversible (allowing the
organization to go back to pre-project status if it doesn't
work); divisible (can be done in steps or phases); consistent
with sunk costs (builds on prior resource commitments); concrete
(tangible, discrete); familiar (consistent with a successful
past experience); congruent (fits the

296 Software engineering management

organization's direction); and with publicity value (visibility
potential if it works).' (p. 221)

 This is a fairly o~mplete description of the main
parameters of the evolutionary delivery process.

'"Too much talk, too little action" is a common complaint about
participative vehicles that do not have concrete tasks to carry
out. For this reason, a Hewlett-Packard facility uses its MBO
(management by objectives) process to prioritize a team's
activities; they are encouraged to work on a succession of easy
problems before tackling tough ones.' (p. 254)

 This philosophy is consistent with the evolutionary

delivery rule of prioritizing the high value and low development
cost steps first.

'"Breakthrough" changes that help a company attain a higher
level of performance are likely to reflect the interplay of a
number of smaller changes that together provide the building
blocks for the new construction. Even when attributed to a
single dramatic event or a single dramatic decision, major
changes in large organizations are more likely to represent the
accumulation of accomplishments and tendencies built up slowly
over time and implemented cautiously. "Logcal incrementalism,"
to use Quinn's term, may be a better term for describing the way
major corporations change their strategy:
 The most effective strategies of major enterprises tend to
emerge step-by-step from an iterative process in which the
organization probes the future, experiments, and learns from a
series of partial (incremental) commitments rather than through
global formulations of total strategies. Good managers are aware
of this process, and they consciously intervene in it. They use
it to improve the information available for decisions and to
build the psychological identification essential to successful
strategies. . Such logical incrementalism is not "muddling" as
most people understand that word [It] honors and utilizes
the global analyses inherent in formal strategy formulation
models [and] embraces the central tenets of the political power-
behavioural approaches to such decision-making.' (pp. 289-90
quoted from James Brian Quinn, Strategies for Change: Logical
Incrementalism, Homewood, Illinois: Richard D. Irwin, 1980)

15.2.4 Peters and Austin
Source: Tom Peters and Nancy Austin, A Passion for Excellence,
Collins
(UK), Random House (USA), 1985 (QC 1985 Thomas J. Peters and
Nancy K. Austin)

Deeper perspectives on evolutionary delivery 297

'It is precisely when the buyer has become less dependent on the
technical help or brand support of the originating buyer, that
greater attention may be beneficially focussed on a systematic
program of finding customer-benefiting and therefore customer-
keeping augmentation.' (pp. 69-70)

 This point simply reminds us of the evolutionary nature of
all product development which needs to compete for customers.

 'And yet we go wrong time and again because we do rely on
numbers and transparencies alone, and lose our "feel". The only
way to enhance feel is to be there.' (p. 94)

 This point is central to evolutionary delivery which is
among many things a way to regain realistic touch with a complex
software development, and to avoid relying too much on paper
specifications for understanding and control.

 'The course of innovation - from the generation of the idea
through prototype development and contact with the initial user
to breakthrough and then to final market - is highly uncertain.
Moreover it is always messy, unpredictable and very much
affected by the determined ("irrational"?) champions, and that
is the important point. It's important, because we must learn to
design organizations - those that are public as well as private,
banks as well as software developers - that take into account,
explicity, the irreducible sloppiness of the process and take
advantage of it, rather than systems and organizations that
attempt to fight it. Unfortunately, most innovation management
seems to be predicated on the implicit assumption that we can
beat the sloppiness out of the process if only we can make the
plans tidier and the teams better organized. . . in that single
phrase "Let's get organized for the next round" lie the seeds of
subsequent disaster.' (pp.11~

 Evolutionary delivery is a specific example of a process
for coping with the inherent messiness of user requirements and
our poor understanding of new untried technology.

'Myth: Complete technical specs. and a thoroughly researched
market plan are invariant first steps to success.
Counterpoint: You must move as rapidly as possible to real tests
of real products (albeit incomplete) with real customers. That
is, you must experiment and learn your way toward perfection/
completion.

Myth: Time for reflection and thought built into the development
process are essential to creative results.

298 Software engineering management

Coitnterpoin t: "Winners" - e . g. successful champions/skunks -
are above all, pragmatic non-blue sky dreamers who live by one
dictum: "Try it, now!"

Related Myth: Big projects are inherently different from small

projects - or, an airplane is not a calculator.
Counterpoint: Some projects are indeed much bigger than others.
Yet the most successful big-project management comes from small
within big mindse-l, in which purposeful "suboptimization" is
encouraged.'

 The above comments are directly aimed at the heart of the
debate between waterfall model planning and evolutionary
delivery.

 'Develop a prototype, or a big hunk of it in 60 to 90 days.
Whether your product or service is a digital switch, a new
aircraft or a computer - or a new health service or financial
instrument or a store format - our evidence suggests that
something can always be whacked together in that time.
 Then evaluate the prototype: that takes another 60 days .
You're already playing with something tangible, or, say, a large
hunk of primitive software code. Now you take the next little
step. Maybe it costs a little more, for a more fully developed
prototype . . . But again you build it fast . . . And this time
you can probably get it, or part of it, onto the premises of a
user (customer) - not an average user (that is a bit away, but a
"lead user" who's willing to experiment with you, or at least an
in-house lead user (a forward thinking department). And the
process goes: slightly larger investments, timeframes that never
run more than 60 to 90 days. It's the "learning organization" or
the "experimenting organization."
 At each step you learn a little more, but you have harsh
reality tests - with hard product/service and live
users/customers - very early. If it doesn't work you weed it out
quickly, before you have career lock-in and irreversible
psychological addiction to the "one best design." (This
approach) can cut the time it takes to complete the development
cycle by 50% or more.' (pp. 129-130)

 This quotation is an excellent explanation of the reasoning
behind evolutionary software delivery methods. Needless to say
the entire
book is rich with practical examples and detail to support this
theory.

 'Multiple passes usually take much less time, and result
ultimately in the development of simpler (more reliable), more
practical (if less "beautiful") systems than the single "Get it
exactly right the first time" blitz.' (p. 150)

Deeper perspectives on evolutionary delivery 299

 This comment applies directly to the big-bang theory of
software development compared to the 'multiple pass'
evolutionary development model. Maybe the interfacing isn't
beautiful, but it is more practical.

 'A "learning system" is vital. . . . And make sure the
learning "system" or process encompasses (and generates) many
small wins. Get people to make daily assessments; then act on
those assessments. (Incidentally the small-win quick-feedback
process actually generates practicality.' (p. 298)

 Evolutionary delivery is a learning process with many small
wins on the way which generates practical action.

 'For heaven's sake, go after the easy stuff first! What's
the thrill of beating your head against a brick wall?' (p. 301)

 This is one of our evolutionary delivery methods central
principles: the highest user-value to development-cost steps
('easy stuff') shall be identified and done first. I have never
been able to understand why some software people plan as though
they enjoy waiting years to see any results handed to their
users and customers. My theory is that the problem is caused by
the fact that they get paid monthly regardless.

'With respect to individuals, psychology (theory) focuses on the
overriding importance of commitment, if motivation is to be
sustained, and of the quick feedback associated with human-
scale, tangible achievements. The literature on resistance to
change (in both individuals and groups) suggests that the best
way to overcome it is taking tiny steps, and, moreover working
on the positive ("we can do something right"), rather than
trying to confront negative feelings directly. . . . The small
win is exactly about the creation of plausible, positive role
models.' (p. 304)

15.2.5 Peters and Waterman

Sotirce: Peters and Waterjnon, In Search of Excellence, Harper
and Row, New York, 1982

'The essence of excellence is the thousand concrete minute-to-
minute actions performed by everyone in an organization to keep
a company on its course.
 'P&G (Procter and Gamble) is apparently not afraid of
testing and therefore telegraphing its move. Why? Because, we

suspect, the value added from learning before the nationwide
launch so far exceeds the costs of lost surprise.' (p. 136)

300 Software engineering management

 TI's (Texas Instruments) ability to learn quickly, to
get something (almost anything) out in the field. They surprised
themselves: as a very small company, $20 million, with very
limited resources, they found they could outmaneuver large
laboratories like Bell Labs; RCA and GE in the semiconductor
area, because they'd just go out and try to do something, rather
than keep it in the lab.' (Charles Phipps, of TI) (p. 136)
 'At Activision the watchword for video-game design is
"build a game as quickly as you can." Get something to play
with. Get your peers fooling with it right away. Good ideas
don't count around here. We've got to do something.' (p. 136)
 'At HP (Hewlett-Packard), it's a tradition that product-
design engineers leave whatever they are working on out on top
of their desk so that anyone can play with it. . . . You are
told probably on the first day that the fellow walking around
playing with your gadget is likely to be a corporate executive,
maybe even Hewlett or Packard.' (p. 137)

¯15.3 Engineering sources

15.3.1 Deming

Source: W. Edwards Deming, Out of the Crisis, MIT CAES, 1986 and
Cambridge University Press

Deming cites the 'Shewhart Cycle', known in Japan aslhe Deming
Cycle. It is an example of an evolutionary product development
method under competitive conditions.

 'At every stage there will be. . . continual improvement of
methods and procedures aimed at better satisfaction of the
customer (user) at the next stage. Each stage works with the
next stage and with the preceding stage toward optimum
accommodation, all stages working together toward quality that
the ultimate customer will boast about.' (p. 87)

 In addition to this direct mention of the cycle, it is
worth noting that the statistical quality control charts, which
are the primary tool of Dr Deming, are one way of viewing the

evolutionary progress results. They can also be viewed by
readers of this book as another kind of measurement process for
critical system attributes. Indeed, Deming is cited by Michael
E. Fagan, as one of his sources on quality control ideas which
led him to develop software inspections.

