
//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Chapter

3

FUNCTIONS
What systems ‘do’

GLOSSARY CONCEPTS

Function

Function Requirement

Mission

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.1 Introduction: Function and Function
Requirement Specification

Function specifications define ‘the business we are in ’. Functions are

‘what ’ a system does. Functions must be distinguished from how well
a system performs (the stakeholder performance attributes, such as

quality) and from how much a system costs (the resources expended).

EXAMPLE Manual Dialing:

Type: Function Requirement.
Description: The user capability, by any available means {finger on key, voice, name

list}, to select or provide and, transmit a {telephone or internet} {number or address}
and any other required symbols, to reach and access any available services. It
specifically includes any keying or other activity needed in connection with commu-

nication, such as accessing lists. It specifically excludes any non-communication
activity such as game playing.

Separation of Functions from Design Ideas

Functions must also be distinguished from design ideas (how a system

is going to achieve its requirements).1 It is all too easy to mix them up

but, if you do, you cheat yourself of the results you might get from a

better design idea. The test is simple. Ask ‘‘Why this {function or

design idea}?’’ If the answer is ‘‘because that is what our system ‘must

have’ to be ‘our’ system at all,’’ you are probably talking about a

function: something so fundamental that it is not for the systems

engineer to modify or choose.

If the answer to ‘‘Why?’’ is ‘‘in order to get a performance improve-

ment’’ or ‘‘for cost reduction,’’ then that specification is a design idea,

not a function. For example, for a bank, ‘lending and dispensing

money’ are clearly basic functions. The automated teller machines

(ATMs) in the wall are clearly a ‘design idea’ from the bank’s point of

view. This is because the ATM is one way to make the functions (of

lending and dispensing money) have certain performance attributes

(such as ‘‘to make it easier for our customers to withdraw money at the

time they want to’’).

Making this ‘function or design?’ distinction perhaps even more

difficult, is the issue that the ‘objects’ we analyze are not purely

‘function’ or ‘design.’ Returning to the ATM example, at the ‘bank’

1 Chapter 2 discussed how requirements must be separated from design in general.

Now, here we are specifically discussing how function requirements must be clearly

separated from design and explaining some of the associated issues.

Functions 83

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

level, the ATM functionality is a ‘design idea’. However, at the level of

the ‘ATM project’ the ATM functions become undisputed ‘function-

ality’. The classification is dependent on your viewpoint.

In Planguage, we classify as ‘function’ or ‘design’ in order to convey

the information about what is fundamental in a given situation

(function) and what is a ‘currently selected option’ (a design idea).

In this sense, we could say that the classification ‘function’ acts as a

constraint2 on the system designer. This distinction is one made in our

minds, because we want the designer to have, or not to have, freedom

to improve things. The ‘system itself’ is unaware of the distinction. An

outside observer might not be able to see the distinction by merely

looking at the system. For example, is air-conditioning in a car a

function or a design? Is it an option or a fundamental concept? It all

depends on the attitude of the people involved.

To give another example: at one stage the concept of putting a ‘motor’

into a horse-drawn carriage (creating the auto-mobile, the horse-less

carriage) was clearly a ‘design’ intended to give certain performance

and cost attributes, which ‘horses’ did not have. At this present stage

of culture, the ‘mechanical engine’ in a car is taken almost completely

for granted and has become a function, ‘providing mechanical engine

power.’ This function clearly requires design ideas to implement it,

which contribute to the overall characteristics of the car (some engine

fuel design options are gasoline, diesel, steam, electricity and nuclear

power).

With ‘functions’ you are not empowered to change them. You can’t

decide that a car will have no wheels; ‘wheel functionality’ is too much

of a ‘given’ function. However, you can decide about many features of

the design of the wheels, to ensure they have interesting attributes.

You can also decide about the design of the ‘motor’ function, to give

both it, and consequently the car, better attributes. But you cannot

suddenly change the ‘motor’ function and opt for the horse again!

One advantage of making the design/function distinction clear is that

if new design ideas come along (which could replace current design),

you are psychologically ready to evaluate them, and accept the ones

that on balance are better than the current design.3 Another advantage

is that you are more likely actively to look for alternative designs. In

overall effect, the design/function distinction can free us up to design

systems more competitively.

2 Of course, it is only a ‘true’ requirement constraint if declared as a ‘function

constraint.’ See later discussion in Chapter 7 on Priority Determination.
3 How we estimate the relative contribution to requirement satisfaction of design ideas

(their ‘impact’) relies on the methods in the following chapters: the quantification of

attributes, and the estimation of the impact on these attributes, of the design ideas.

84 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Keep uppermost in your mind that this classification process is simply

about giving information to systems engineers about what they should

take as ‘givens’, and about what they should ‘engineer.’ Any engineer,

who has a true (engineering or systems architecture) design process,

should care about this distinction: the information about what they

should design is of crucial importance to them.

Classification as either ‘function’ or ‘design’ depends on:

. the circumstances:

A ‘selected design’ or ‘design constraint’ becomes viewed as provid-

ing ‘required functionality’ as seen from later and lower levels of the

decision-making hierarchy.

. the stage of development:

One stakeholder’s design idea becomes another development pro-

cess person’s ‘required function’.

. the current culture:

Yesterday’s design may become today’s ‘given’ function.

. the intent of the specification:

If it is specified in order to deliver performance or savings require-

ments, it is a design.

If it is there because it is ‘fundamental’, ‘because that is how we do

things,’ then it is a function.

. the degree of freedom of a given type of planner/designer/architect

to actually change the specification:

If they are free to change it, then it is more likely design.

The above are some, hopefully useful, ideas to help you classify a

specification as a function or a design. But, do not get over fixated by

this process. It is finally one of degree and subjective judgment. A

specification ‘is what it is specified to be’ – no matter how we classify

it. The classification is intended to give us better ideas of our respon-

sibilities for the specification and our options (Must implement as it

is? Or, OK to improve it?).

Function Requirements

Any required function, which is essential and fundamental to the

future system, is called a ‘function requirement’. It must be specified

as ‘pure’ function and it must be specified with information about the

conditions [time, place, event] under which the functionality exists

(otherwise there is no actual requirement!).

Functions 85

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

EXAMPLE Type: Function Requirement: {F1, F2, F3}.

F1 [USA]: 911 Emergency Dialling Capability.
F2 [Finland]: Character Capability {Finnish, Swedish, English}.

F3 [End Next Year, California]: Exhaust Emission Testing.

In addition, any instance of a real-world function always comes

attached with a set of resource and performance attributes. So when

we specify a function requirement, we have to consider what has to be

done about its associated attributes. All function requirements must

respect the full set of performance and resource requirements, which

apply to ‘their level’ of the system.

EXAMPLE Availability.Q1 [F1, F2, F3]:

Type: Quality Requirement.
Scale: % Uptime. Fail: 99.0%. Goal: 99.5%.

EXAMPLE Availability.Q1:

Type: Quality Requirement.
Scale: % Uptime.
Fail [F1]: 90%, [F2]: 92.5%, [F3]: 95%.

Goal [F1, F2, F3]: 99.5%.
An example of how to specify the specific attachment of performance levels to functions.
Availability Q1 is ‘attached’ to the three named functions, F1, F2 and F3 using
qualifiers. In the first instance all goals are attached to the three functions. In the second
instance only the one Goal is attached to the three functions and the Fail levels are
attached individually and differently.

Any global scope requirements automatically apply to a function or

sub-function, unless they are specifically contradicted by more specific

local requirements.

Of course, it may be the case that certain key functions may require

even higher performance levels (say for reliability and efficiency) than

other functions. In these specific cases, the definition of the function

requirement must explicitly be linked to appropriate specific

requirements.

EXAMPLE Reliability: Scale: MTBF. Goal [Function X]: 99.98%.

Service Performance: Scale: Time in seconds to <reply to inquiries>.
Goal [Function: FX]: 1 second/reply.
Explicitly linking an attribute to a function.

By the time a function requirement (or part of a function require-

ment) is planned for delivery in an Evo step, its performance and

resource requirements, and the conditions surrounding its delivery

86 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

should be precisely pinned down using specification parameters like

Risks, Is Impacted By, Dependency and Authority.

All function requirements will, ultimately, have a set of performance
and resource attributes associated with them.
Systems engineering is about getting control over these attributes.

3.2 Practical Example: Function Analysis

Consider the (real) proposal to the Board of Directors asking for

$60 million, which we first considered in Section 2.8:

Proposal to the Board of Directors

A special effort is underway to improve the timeliness of Engineer-
ing Drawings. An additional special effort is needed to signifi-
cantly improve drawing quality. This Board establishes an
Engineering Quality Work Group (EQWG) to lead Engineering to
a breakthrough level of quality for the future. To be competitive,
our company must greatly improve productivity. Engineering
should make major contributions to the improvement. The simplest
is to reduce drawing errors, which result in the AIR (After Initial
Release) change traffic that slows down the efficiency of the
manufacturing and procurement process. Bigger challenges are
to help make CAD/CAM a universal way of doing business within
the company, effective use of group classification technology,
and teamwork with Manufacturing and suppliers to develop and
implement truly innovative design concepts that lead to quality
products at lower cost.

The EQWG is expected to develop ‘end state’ concepts and imple-
mentation plans for changes of organization, operation, proce-
dures, standards and design concepts to guide our future growth.
The target of the EQWG is breakthrough in performance not just
‘work harder.’ The group will phase their conceptualizing and
recommendations to be effective in the long term and to influence
the large number of drawings now being produced by Group 1 and
Group 2 design teams.

Now let’s further analyze it. Who are the stakeholders? What are the

functions?

Stakeholders:

Management (Engineering Manager, Board of Directors and others)

Functions 87

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Engineering Design Teams

EQWG

Group 1 Design Team

Group 2 Design Team

Procurement

Manufacturing

Suppliers

Customers

Functions:

Carry out Research and Development

Create Designs

Produce Engineering Drawings

Procure Materials

Manufacture Goods

Establish Work Environment

Maintain Work Standards and Practices

Maintain Organizational Structures

Note: These lists of stakeholders and functions show an alternative simpler
formatting for Planguage sets (Parenthesis brackets ‘{ }’ and commas are
dispensed with).

As the functions become ‘lower level,’ they begin to constrain the

design options! Great care must be taken that function specification is

not taken down too far to the wrong level of decomposition. For

example, ‘Produce Engineering Drawings’ is possibly beginning to

dictate certain aspects of the solution.

Notice that by separating the different concepts of functions, design

ideas, performance, resources and stakeholders, you get much greater

clarity about what is really being said. The basis for further system

improvement is also laid. For example, the performance attributes

should next be taken a stage further, and be given better definitions

that include numeric values stating the requirement levels. You are

then able to start evaluating the ‘impact of the proposed design ideas’

on ‘all the requirements.’

Now you try! Take some recent and important system requirements
from your own work, and analyze it into these components: {Func-
tion Requirements, Performance Requirements {Qualities, Workload
Capacities, Resource Savings}, Resource Requirements, Design
Constraints, Condition Constraints, Design Ideas, Assumptions and
Comments}.

88 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.3 Language Core: Function and Function
Requirement Specification

Here are some formats for referencing and specifying functions,

including structuring them. If this seems more than you need for

the moment, then all you really have to know is the basic format,

‘Function Tag: <function description>.’

Note: Function specification is not always for function require-
ments. You need to specify functions for other purposes as well,

such as describing existing systems and clarifying functional

concepts.

Maintain
Rules

Update
Rule

Update
Policy

Maintain
Process Owner

Maintain
Policy

Implement
Process

Improvement

Maintain
Process Description

Update
Exit Conditions

Update
Procedure

Update
Entry Conditions

Update
Process Details

Maintain
Process

Maintain
Standards

Others

Figure 3.1
Diagram showing the relationships amongst the functions used in the examples in this
section.

Functions 89

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Referencing Functions

Functions are identified with a tag. Some variations on the tag

structure are given here below. You can use the format: ‘Parent

Tag.Kid Tag’ or, if it is ‘unique in context,’ just ‘Kid Tag.’ The

first/left tag indicates a parent function, and the following tag indi-

cates a kid/child function.

EXAMPLE Tag: Maintain Standards.Maintain Rules.

Tag: Maintain Rules.Update Rule. ‘‘or just Update Rule if it is not ambiguous.’’

EXAMPLE You can also use the format:
Maintain Standards: Includes: Maintain Rules.
Maintain Standards: Includes: {Maintain Policy, Maintain Rules, Maintain Process}.
Or
Maintain Standards: Includes: Maintain Rules: Includes: Update Rule.
The latter example is explicit about the hierarchy.
Note: ‘{ . . . }’ is the Planguage symbol for a ‘set’ of things.

Specifying an Arbitrary Set of Functions

There is no implication when specifying functions and functional

relationships, that all siblings are specified or that the functions listed

are even direct descendants of the same parent. Any set of functions

can be given a common collective tag for reference:

Arbitrary Function Set: Type: Function {Function Tag 1, Function

Tag 2, . . . , Function Tag N}.

EXAMPLE Maintain Standards:

Type: Function.

Defined As: {Maintain Rules, Maintain Policy, Maintain Process, Others}.
Or more briefly:
Maintain Standards:

Function: {Maintain Rules, Maintain Policy, Maintain Process}.
Note: use of the parameters ‘Type’ and ‘Defined As’ are optional. It is a matter of style and
readability.

Inheritance of Higher Level Requirements

A function will automatically inherit any relevant specifications’ para-

meters from relevant higher system levels. This includes higher-level

(system-wide) performance requirements, budgets and any condition

constraints. These inherited parameters apply by implication, unless

there are other parameters that specifically override them in more local

function specifications.

90 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Function Specification

A function specification defines all the currently interesting functional

aspects. It optionally includes the function description, functional

relationships (that is, the names of relevant supra-functions, sub-

functions and sibling functions), associated specific performance and

resource attributes, condition information [time, place, event], source

information, risks and assumptions, as well as many other parameters.

It even includes the implied or ‘default’ attributes’ properties inherited

from higher levels of the system of which the function is a member!

Here is an example of a client’s function specification (edited for

confidentiality):

EXAMPLE Emergency Stop:

Type: Function.
Description: <Requirement detail>.
Module Name: GEX.F124.

Users: {Machine Operator, Run Planner}.
Assumptions: The User Handbook describes this in detail for all <User Types>.
User Handbook: Section 1.3.5 [Version 1.0].

Planned Implemented: Early Next Year, Before Release 1.0.
Latest Implementation: Version 2.1. ‘‘Bug Correction: Bug XYZ.’’
Test: FT.Emergency Stop.

Test [System]: {FS.Normal Start, FS.Emergency Stop}.
Hardware Components: {Emergency Stop Button, Others}.
Owner: Carla.

The main parameters for function specification are described in the

following paragraphs.

Function Description

A function description describes only the action(s) of the function.

Function Tag 1: Function: <function description> <-Source.

EXAMPLE Refugee Transport: Moving refugees back to home villages. <- Charity Aid Manual.

‘‘The mode of transport will be determined by safety, and cost factors.’’

A more explicit ‘parameter-driven’ format may also be used for clarity:

EXAMPLE Tag: Refugee Transport.

Type: Function Requirement.
Description: Moving refugees back to home villages.

Source: Charity Aid Manual [Version¼ Last Year].
Dependency: The mode of transport will be determined by safety and cost factors.

Functions 91

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

The choice of more or less formality is governed by factors such as size

of plan, size and type of readership, familiarity with Planguage and

stage of planning (for example, ‘drafting ideas’ or ‘making a formal

plan’).

Functional Relationships

Functional relationships are used to define the relationships amongst

functions. For a specific function, the different kinds of relationship

include:

. Sub-functions: These are any lower-level functions that comprise a

function. Any sub-functions at the immediate lower level to the

specific function are known as Kid (Child) functions.
. Supra-functions: These are any higher level functions, which the

specific function forms a part of (is ‘sub-function’ of). The immedi-

ate supra-functions of a function are called the Parent functions.

The ultimate, hierarchical top level function, within an organization

or project, is usually called a ‘mission.’
. Sibling functions: These are any functions sharing at least one

parent function with another ‘sibling’ function.

Here are some examples of specifying functional relationships (see

Figure 3.1):

Defining Supra-functions (as a set of functions)

Supra-functions: Function {Function Tag 1, Function Tag 2, . . . ,

Function Tag N}.

EXAMPLE Tag: Update Rule.

Type: Function.
Supra-functions:
Function: {Maintain Rules, Maintain Standards, Implement Process Improvement}.

Referencing Supra-functions for a Function

A hierarchy of tags can be used to show the function hierarchy. You

can use bold or underline to emphasize which tag you are focusing on.

The non-emphasized part is the information about the supra-function

ancestry or genealogy.

A hierarchy of tags is connected by dots: ‘Tag 1.Tag 2.Tag 3’.

EXAMPLE Maintain Standards.Maintain Rules.Update Rule: Type: Function.

92 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Defining Sibling Functions

The format examples below define siblings.

EXAMPLE Some Kids: Includes: {Kid1, Kid2}.

EXAMPLE All Kids: Consists Of: {Kid1, Kid2, Kid3, Kid Last}.

Attributes of a Function

Attributes of a function are any specific performance or resource

attributes specified in the function definition. They include past

benchmarks {Past, Record, Trend} describing a function’s current or

historic attributes and, if a function requirement is being specified,

they also include future target requirements {Goal, Budget, Stretch,

Wish} and constraints {Fail, Survival}. Qualifiers must be used in

those attribute specifications to define the specific instances of the

past or future use of the function.

EXAMPLE Goal [End Dec Next Year]: 22,000.

Attributes of a function can be described and directly connected to the

function in the following way:

TEMPLATE <Function Tag 1>:

Type: Function.
Description: <describe the function here, well enough to allow testing of it>.
Attribute 1: Scale: <?> Goal: <?>.

(Attribute 2: Scale: <?> Budget: <?>.)

Template for specifying the attributes of a Function.

Note: Fuzzy brackets, ‘< . . .>’ are used in a template to indicate what

to ‘fill in’. The fuzzy brackets may contain some instruction, which

will always be wiped out when the brackets are filled in. The paren-

thesis, ‘(. . .)’ are used to indicate (optional) specification types.

EXAMPLE Flagship Product:

Type: Function.
Description: Provide a mobile telephone service [Product Code 9998].
Reliability: Scale: Mean Hours between Faults. Goal [End Dec Next Year]:

22,000.
Battery Life: Scale: Hours Life. Goal [Standby]: 500, [Calling]: 50.
Function with specific local performance requirements. The specification of function,
Flagship Product contains explicit and local definition of two performance attri-
butes. Other attributes and specifications may be implied by other specifications
elsewhere.

Functions 93

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Qualifiers

Qualifiers can be used to specify the set of conditions [time, place,

event] applying to a specific function.

Qualifiers can also be applied to functions in the following way:

TEMPLATE <Function Tag 1>:

Type: Function Requirement.
Qualifier: [time condition, place condition, event condition].
Description: <Define the function here>.

Template for a function with conditions. Note: the function is only ‘required’ or ‘valid’
when all elements of the qualifier are ‘true’.

EXAMPLE Installation:

Type: Function Requirement.

Qualifier: [Next Year, Activity¼Emergency Repair, Major Cities].
Description: Any job <our installers> must perform.

Any useful set of qualifiers is valid.

3.4 Rules: Function and Function Requirement
Specification

Gist: Specific Rules for specification of Functions and Function

Requirements.

Tag: Rules.FR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Base: The rules for generic specification, Rules.GS and the rules for

requirement specification, Rules.RS apply.

R1: Functionality: Function requirements will specify what the

system must do and all specified functionality must be required by

specified stakeholders (Type: Function Requirement).

Function requirements are not themselves ‘unconditionally required.’
Their actual implementation will depend on their relative priority – as
specified by qualifiers and other parameters (such as ‘Authority’).

R2: Detail: The function requirement specification should be

specified in enough detail so that we know precisely what is

expected, and do not, and cannot, inadvertently assume or include

94 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

function requirements, which are not actually intended. It should

be ‘foolproof’.

Detailed definition within sub-functions can satisfy this need for clarity, the
higher level function does not need to hold all the information.

EXAMPLE Fuzzy Function Environment:

Gist: Ensuring Environmental Considerations.
This is a defective specification, given Rule R2. A more detailed function definition is
given in the following example.

EXAMPLE Ensuring Environmental Considerations:

Type: Function Requirement.
Description: All legally and competitively necessary functionality, immediate and
potential, regarding environmental protection, in the widest interpretation possible,
to protect us against lawsuits, and give us a clear positive reputation amongst

consumers.

R3: Not Degrees: Elementary function specifications must not be

described in terms of degrees or variability.

Elementary functions are binary (present or absent in totality) in
nature. If something is ‘variable in degrees,’ then it probably needs to be
reclassified, and redefined as a performance or resource specification linked
to a function.

R4: Not Design: The specified ‘function’ requirement must not be
a design idea (for example, a strategy, a device, a method or a process)

whose only or main justification is to satisfy a performance or resource

requirement of the system.

If the ‘function specification’ is really a design idea, then it shall be
re-classified as ‘Type: Design Idea’. If it was intended to support yet
undefined performance or resource requirements (like Design X Impacts
Performance Y), then action will be taken to properly define these attri-
bute requirements. Such action might justify rewriting the so-called
‘function’ as a design specification, as there is now at least one requirement
that the design idea can impact.

We must avoid ‘false’ function requirements, which are really just designs,
which someone assumes would be good for meeting unspecified and
unofficial performance requirements. (Local version of Rules.RS.R9:
Design Separation.)4

4 This rule intentionally duplicates RS.R9 as it is considered so important for functions.

Whenever such duplication occurs, specific reference should be made to the rule being

duplicated.

Functions 95

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

EXAMPLE Usability: ‘‘An example that violates R4 as the Type classification is incorrect! The

Description also has errors.’’
Type: Function Requirement.
Description: A state-of-the-art, user-friendly interface.

‘Usability’ is a performance attribute, and needs definition (using a Scale and other
parameters, such as Goal). If your intuition doesn’t tell you this, then ‘state of the art’ is a
clue as to ‘variability’ or ‘degree of goodness.’
‘Interface’ is a ‘thing to be designed’ in order to achieve various attributes, including, but
not limited to, ‘Usability.’ Specify this interface amongst the ‘design ideas.’ It is not a
‘what,’ but it is a ‘how’ (a design idea).

R5: Function Priority: If there is a required simple priority for

a function requirement, then it should be explicitly stated with

information about its authority and/or the source reference and the

reason for the priority.

Use the Priority parameter ‘Priority: After Y’ or use suitable qualifiers

‘[Before X].’ Use the Authority, Source and Rationale parameters to

specify the supporting information.

EXAMPLE Rationale: We must address Service Level Agreements as soon as possible to enable

the correct level of support to be given when a customer phones with a problem.
That is where we are incurring too much cost and tying up engineering support
resources. <- Customer Services Director.

See also Section 7.7, which discusses Priority Determination.

R6: Testable: A function must be specified, so that it is possible to

define an unambiguous test, to prove that it is later implemented

(Local version of Rules.RS.R8: Testable).

R7: Test: Any notions of how or what needs to be tested, in order to

validate a function may be described using the Planguage parameter

‘Test,’ with the function name as the qualifier.

The Test information is either specified with the function definition

or as a separate item.

EXAMPLE Function Y:

Type: Function Requirement.5

Description: Charging to Accounts.
Test [Function Y]: Tests shall be developed to demonstrate that this function is

available for all counties in this state, and prove that no other states or countries can
access it.

5 Note: By default, a ‘Function Requirement’ is assumed to be a ‘Function Target’.

96 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Audit: Test [Function Requirement: Function Y]: We must demonstrate to internal

auditors that no counties, which are <financially insolvent> are allowed access to
this function <- Audit Report [August This Year].

3.5 Process Description: Function Requirement
Specification

Process: Function Requirements

Gist: A process for specification of function requirements.

Tag: Process.FR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Entry Conditions

E1: The Generic Entry Conditions apply.

E2: You have the ability to observe comparable ‘real’ systems (see P3,

below).

Procedure

P1: Describe the hierarchical structures of the high-level function(s), as

sets of related function and sub-function tags (for example, F1.F2.F3).

P2: For each function tag (this also includes tags for sub-functions and

supra-functions as relevant), define the function, in the detail required

by the rules for function requirement specification (see Rules.FR in

Section 3.4).

Note: Focus on real functionality (‘what it does’) and exclude any design
ideas intended to satisfy performance and resource requirements.

P3: Where relevant: sample comparable ‘real systems’ to check the accuracy

of the function specifications. Correct the specifications as necessary.

P4: Check accuracy and completeness of function requirements, with

the people who are currently using similar existing systems. Correct

the specifications as necessary.

P5: Perform Specification Quality Control (SQC) on the draft func-

tion specifications. Check the quality level against the required quality

level, as specified by the exit conditions (see X1). If SQC fails, rewrite/

Functions 97

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

correct the function specifications (that is, revisit P1 to P4). Continue

P5 until the appropriate quality level is reached.

P6: Once the function specifications have exited SQC, get real current

system users (if any) to sign off agreement to them.

P7: Repeat any procedure above until the exit conditions can be satisfied.

Exit Conditions

X1: The Generic Exit Conditions apply.

By default, no more than 0.2 remaining major defects/page are allowed in
any of the function specifications. (A page is 300 words of non-commen-
tary text.)

X2: The relevant system users, if any, must have signed off the

function specification.

Simplified Function Requirement Specification Process

Process: Function Requirement Simplified.
Gist: An alternative simplified variation for Function Requirement
Specification.
Tag: Process.FRS.
Version: October 7, 2004. Owner: TG. Status: Draft.

Entry Conditions
None.

Procedure
P1: Declare a specific, ‘already specified’ and ‘currently opera-
tional’ system to be the ‘living map’ of the function requirements.

There is usually an old existing system of some kind. It is likely that a
future system must replace this old system, in order for the business
or organization to remain viable in the future.

Where relevant, use [qualifiers] to aid the mapping of the old to the
new.

The function specification detail is then continuously observable
‘in the real system.’ It should only be analyzed ‘as needed.’ Exit
immediately.

Exit Conditions
None.

Note: This method is useful when doing evolutionary delivery of
changes to impact performance/resource attributes and minor
changes to real functionality for an existing large system. You focus
on ‘improvement results,’ not ‘supporting functionality.’ I normally
apply this method to most real projects I get involved in (TG).

98 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.6 Principles: Function and Function Requirement
Specifications

These are principles for recognizing what is, and is not, a function and

also for working with functions.

1. The Principle of ‘What Function?’

Function is ‘what’ a system does, never ‘how well’ it does it or

‘how it does it so well.’

2. The Principle of ‘Thing with Attributes’

A function is the thing, which has the performance and resource

attributes attached to it.

3. The Principle of ‘Living Map’

Function specification is sometimes best done by declaring the

existing system to be a living map.

4. The Principle of ‘Part of Totality’

Functions are always part of some larger function and can prob-

ably be described by their own sub-functions.

5. The Principle of ‘Each to their Own’

Different functions require different performance and resource

attributes; so, one reason we specify the functions is to identify

and distinguish their required attributes.

6. The Principle of ‘Timing’

Different functions can be delivered to customers at different times,

so another reason to specify functions is to know ‘what to do when.’

7. The Principle of ‘Conditional Function’

Some functions may not be necessary, except under specified condi-

tions or events, and these conditions should be specified and exploited

in project planning. You don’t have to do what is not yet required!

8. The Principle of ‘Room with a View’

A function definition is not absolute; it is a viewpoint, and many

overlapping function views can be made and used fruitfully to

satisfy different needs.

9. The Principle of ‘Terrain does not change with the Maps’

The real system does not change just because you document func-

tion viewpoints and function hierarchies: correctly or incorrectly.

10. The Principle of ‘False Function Foils Fruits’

If you mistakenly request a design, as basic functionality, you will

limit your ability to improve the design to give better competitive

attributes.

Alternatively,
Don’t request ‘functions’ which are really ‘designs for performance’,

You might not get the performance you really want.

Functions 99

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.7 Additional Ideas: Function and Function
Requirement Specification

Mission

As mentioned earlier in this chapter, the ultimate top-level function of

any system is termed its ‘mission.’ A mission describes ‘what’ a specific

system does. Many organizations have explicit mission statements.

We could just as well call ‘mission’ the ‘top-level function.’ But the

concept and term ‘mission’ is well known, and for many purposes

works better than ‘function.’ For example, ‘The mission of this project

is Mars Exploration’ sounds better with ‘mission’ rather than ‘func-

tion.’ Keep in mind that any ‘mission’ is still really a sub-function of

some larger functional context.

Of course, a mission only provides a high-level description of a

system’s function. Further detail is provided by its sub-functions and

by its associated performance and resource attributes. Also, to fully

understand a system, we must have information about its environ-

ment. A system interacts with the environment in which it operates.

Note it is important that we not confuse ‘mission’ with ‘vision.’ A

vision statement is a higher-level concept. It can include ideas about

how well the mission will be conducted. For example, ‘‘Our vision for

the ‘Mars Mission’ is to get back alive, with substantial new scientific

knowledge.’’

Elementary and complex concepts

Functions and many other Planguage types can be described as being

elementary or complex concepts. The meaning of these terms, regard-

ing functions, is as follows:

. An elementary function is not decomposed into sub-functions. It may

be the case that it is unable to be broken down any further or a

deliberate decision may have been taken not to further decompose it.
. A complex function is composed of a set of at least two sub-

functions. The set of sub-functions can be any mix of relevant

complex and elementary functions. At the lowest level of functional

decomposition a complex function is defined completely in terms of

elementary functions.

EXAMPLE Planning a Project:

Type: Complex Function.

Includes: Elementary Function: {Reviewing Evo Step Feedback, Checking Require-
ment Specification is Valid, Selecting Next Evo Step, Allocating Staff to Evo Step}.
An example of elementary and complex functions.

100 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Measuring Functionality

Functions are either ‘present or absent;’ they have a binary nature.

They are either documented or observable (testable) in a real system or

they are not.

Sets of complex functions can be thought of numerically as ‘per-

centage amounts’ of their ‘defined lists’ of elementary functions.

Elementary functions are (by definition) not divided into sub-

functions.

Complex functions are either 100% present (all elementary functions

in the defined complex function set are present) or they do not

‘wholly’ exist. For a complex function called ABC, you can talk about,

say, 90% of the set of elementary functions comprising ABC being

defined or implemented. In such a situation ABC itself, the entire

complex function, doesn’t exist yet; only known degrees of it are

defined or in place.

Additional Examples of Function Specification

Here are some Planguage ideas, additional to the ones shown in

Section 3.3, which can be applied to function specification. They give

more detail on the use of qualifiers.

EXAMPLE F3 [F499]: Receiving e-mail from Customers.

F3 is a valid function if, and only if, F499 is active or in existence. F499 is a ‘condition’
(specified in the format of a [qualifier]). F499 is detailed ‘elsewhere’. F3 is a complex
function specification because it has a qualifier, which must be determined by the
qualifier’s own definition
SYSX. F5: Sending e-mail to defined [Group].
‘F5’ is a ‘kid’ element of the complex function SYSX. The actual function implementation
will differ depending on the current definition of ‘Group’.
F6 [Date¼After First Release]: Get approval by electronic signature.
F6 is not ‘valid’ (for implementation, for testing) until after ‘First Release’ event has
taken place. First Release is a specification variable, depending on the actual release
date.
F7:
Qualifier: [Country¼ {European Union Countries, Norway, Not USA, Not

Canada}].
Definition: Maintain System XYZ Standards.
The function, F7 is valid for a defined set of countries. The qualifier parameter,
‘Country¼ ’ illustrates how a more explicit format can provide better readability for
Planguage novices.
F8:

Description: Answering direct-line telephone.
Speed: Scale: Number of <whole rings> heard at Receiving End, before Answer
Signal is <sensed>.

Functions 101

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Past [Condition¼Employee Not At Desk]: 4.

Goal [Condition¼Employee Not At Desk]: 1.
Answer: Scale: Probability that Caller is satisfied with the Given Answer.

Past [OK]: 50%, Goal [OK, Version 6]: 90%.
OK: Defined As: {Condition¼Correct Employee, Hours¼ 0800 to 1700}.

In this example, the function, F8 is defined together with multiple attributes,
both benchmark and target. Notice the qualifier ‘OK’ is defined in a separate
statement to make reuse of it easier. This also prevents repetition, saves space and
saves time when making changes.

3.8 Further Example/Case Study: Function
Specification for an Airborne Command and
Control System

This is an extract from the top-level function specification for a

real system (The system is now operational and delivered to

customers).

Note: Mapping functions in detail is not the prime intention

when using Planguage. The aim is to establish an evolutionary

plan, which focuses on result delivery to some defined system

stakeholders. This aim does not necessarily require any ‘delivery’

of additional functionality! Delivering ‘designs,’ to just improve

performance and resource attributes for existing functionality is

quite common. The level of understanding of the functions

needed at the planning stage is merely that required to support

the system designers and others involved in the requirement

specification process. Specifically, this means that a complete, in-

depth description of all the system functions and processes is not

required. I strongly recommend investigating functions in detail

only as required, at the design stage of each evolutionary delivery

step. (There may well be exceptions to this, but don’t waste

resources.)

Airborne Command and Control: ACC.
Type: System.
Includes: Type: Sub-system:
M: Mission.
P: Planning.
D: Data Handler.
C: Communications Intelligence.

ACC.D.MOP: ‘‘MOP stands for ‘Manual Operation(s)’.’’
Type: Function.

102 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Includes:
BIT: Provide ‘Built In Test.’
DATAB: Provide database diagnostics. <Various levels of

checking>. Not including <on mission>.
DATAELEMENT: Check <Data element reasonableness> when

<on mission>.
DATALINK: Interchange data links manually by operators.

‘‘Component from our mother company.’’
DIAG: Display all faults to operator and log on file.
DISPLAY: Display error and fault detection data to operator.
ESM: Display error messages from communications/

non-communications system.
FMS: Display any loss of data from Flight Management

System.
HEARTBEAT: Supervise computer node <status> by heart-

beat <signaling>.
INIT: Test data destructive HW when initializing the

<system>.
LINK: Display <status information> of the data links.
LOG: <Save on file> fault detection data and

detailed test information.
PRINTER: Report <printer status> from the AX-BUS when

any fault occurs.
RADAR: Display loss of data from radar.

This was from the first draft of the function specification. Many

concepts are marked with <fuzzy brackets> and require further work

to precisely define them.

D: Data Handler.MOP

M: Mission

P: Planning

C: Communications
Intelligence

DATALINK

BIT HEARTBEAT

INIT
DISPLAY

LOG

DIAG

RADAR

FMS

ESM
LINK

PRINTERDATAB

DATAELEMENT

ACC: Airborne
Command and Control

Figure 3.2
Functions within the Airborne Command and Control (ACC) System.

Functions 103

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Here is an example of a function requirement:

(Notice the use of a Planguage template. The template parameters are given in
bold. See the next section for a more detailed specification of this template.)

Example of a Function Requirement

Tag: DATADIAG:
Type: Function Requirement. ‘‘Note, DATADIAG is not ‘real’, it is an
example made up using the basic ideas named in the real case
above. It is for teaching purposes only.’’
Version: October 7, 2004 21:38.
Owner: Quality Assurance Division.
Implementer: Database Team.
Stakeholders: Quality Assurance Division, Maintenance Support.
Gist: Obtain Database Diagnostics.
Description:
S1: To monitor database quality. <Various levels of checking>.
S2: To report database diagnostics.
S3: To integrate with the automatic recovery system.
S4: To run in parallel with the operational use of the database as a
background function.
S5: Monitoring operation to be optional. For example, to be off
when <on mission>.
S6: Monitoring operation to be user-driven by parameters to enable
selected sampling of specific classes of database records, data
elements and relationships.
Supra-function: ACC.D.MOP. ‘‘This is the specification of the supra-
function of DATADIAG from some viewpoint.’’
Sub-functions: None specified.
Supports: {System Recovery, BugMaintenance, Database Integrity}.
Assumptions:
A1: This sub-system will not degrade operational database perfor-
mance by more than 5%.
A2: It will be cheaper to automate this function than to do analysis
manually.
A3: It will be faster and more reliable than manual checking.
Dependencies: D1: The database system itself must be defined and
operational.
Risks: R1: Failure to update this function in parallel with the data-
base structure.
Priority: This function must be available to some degree in first
customer use releases. It will also be used in pre-release systems
testing to some undefined degree.
Test: T1: This function shall be used in system testing andan early version
of it can and should be made available in parallel with the develop-
ment of the database itself. The function shall be tested by insertion of
artificial database defects, and shall discover 100% of these.
Financial Budget: The cost of developing and maintaining this func-
tion is assumed to be between 10% and 50% of the cost of building
and maintaining the database software in total.
Function Intranet Location: ACC. Software.DB-Diagnosis.

104 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.9 Diagrams/Icons: Function and Function
Requirement Specification

Mission
F1

F1.1 F1.2

OtherProcesses

P1 P2

Performance

Implementation
Resources

Maintenance
Resources

Operational
Resources

Availability

Usability

Adaptability

Other

Work Capacity

Other

Time to Market

Cost Reduction

Designs

Many-to-many relationships
between the different hierarchies

FunctionsResources

Other

Time

Effort

Financial
Resources

Figure 3.3
This shows the four main system attribute types: resource, function, performance and
design. It also shows the processes, which implement the functions. Using Planguage,
the complex relationships amongst these four different types can be specified. For
example, a specific performance level might apply only to a handful of functions rather
than the entire system, or a function might be implemented by several processes, or
different resources can be specifically allocated to different functions.

Functions 105

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Template for Function Specification <with hints>

Tag: <Tag name for the function>.

Type: <{Function Specification,

Function (Target) Requirement,6

Function Constraint}>.

=========================== Basic Information ==========================

Version: <Date or other version number>.

Status: <{Draft, SQC Exited, Approved, Rejected}>.

Quality Level: <Maximum remaining major defects/page, sample size, date>.

Owner: <Name the role/email/person responsible for changes and updates to this

specification>.

Stakeholders: <Name any stakeholders with an interest in this specification>.

Gist: <Give a 5 to 20 word summary of the nature of this function>.

Description: <Give a detailed, unambiguous description of the function, or a tag reference to

some place where it is detailed. Remember to include definitions of any local terms>.

============================= Relationships ============================

Supra-functions: <List tag of function/mission, which this function is a part of. A hierarchy of

tags, such as A.B.C, is even more illuminating. Note: an alternative way of expressing supra-

function is to use Is Part Of>.

Sub-functions: <List the tags of any immediate sub-functions (that is, the next level down), of

this function. Note: alternative ways of expressing sub-functions are Includes and Consists

Of>.

Is Impacted By: <List the tags of any design ideas or Evo steps delivering, or capable of

delivering, this function. The actual function is NOT modified by the design idea, but its

presence in the system is, or can be, altered in some way. This is an Impact Estimation table

relationship>.

Linked To: <List names or tags of any other system specifications, which this one is related to

intimately, in addition to the above specified hierarchical function relations and IE-related links.

Note: an alternative way is to express such a relationship is to use Supports or Is Supported By,

as appropriate>.

============================= Measurement ============================

Test: <Refer to tags of any test plan or/and test cases, which deal with this function>.

====================== Priority and Risk Management =====================

Rationale: < Justify the existence of this function. Why is this function necessary? >.

Value: <Name [Stakeholder, time, place, event>]: <Quantify, or express in words, the value

claimed as a result of delivering the requirement>.

Assumptions: <Specify, or refer to tags of any assumptions in connection with this function,

which could cause problems if they were not true, or later became invalid>.

Dependencies: <Using text or tags, name anything, which is dependent on this function in any

significant way, or which this function itself, is dependent on in any significant way>.

Risks: <List or refer to tags of anything, which could cause malfunction, delay, or negative

impacts on plans, requirements and expected results>.

Priority: <Name, using tags, any system elements, which this function can clearly be done

after or must clearly be done before. Give any relevant reasons>.

Issues: <State any known issues>.

=========================== Specific Budgets ===========================

Financial Budget: <Refer to the allocated money for planning and implementation (which

includes test) of this function>.

Figure 3.4
A template for Function Specification.

6 Note: By default, a ‘Function Requirement’ is assumed to be a ‘Function Target’.

106 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.10 Summary: Function and Function
Requirement Specification

Functions are ‘what ’ a system does. The concept of a pure ‘function’

does not include information about the function’s performance attri-

butes (how well a function is done); nor about the function’s condi-

tions [when, where, if]; nor about design ideas (how, a function

achieves its attributes at the required levels).

My view of the discipline of functions is that they are ‘boring, but

essential, necessities.’ They are the basics of the business or field you

are dealing with, and probably exactly the same as those of your

competitors in the same market.

The ‘real competitive action’ lies in identifying the interesting (com-

petitive) performance and resource attributes for the functions, then

establishing their required competitive levels and, then finding inter-

esting ways (designs) to achieve them.

So, you can view functions as providing the framework ‘supporting’

the performance and resource attributes necessary for winning.

Any attempt to implement a function without trying to gain control

over its performance and cost attributes, will result in unplanned,

uncontrolled and thus probably undesired attributes. You must con-

trol attributes of functions to control the ‘Risks.’

Many of the common problems, which systems engineers experience

(such as deadline control, cost overruns and bad quality) are, in my

view, significantly caused by:

. Specifying poorly-justified and insufficiently-detailed ‘design’ and

calling it ‘Function Requirements.’
. Articulating the performance and costs of functions in ways that

can’t be measured or tested.
. Focusing on testing functions alone, rather than the key stake-

holder-value performance and cost attributes.

Functions are merely real-world reference points. They are not the
interesting ‘problem’ for competitive systems engineering.

Functions 107

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

