
The Magazine for Agile Developers and Agile Testers

© Val Thoermer - Fotolia.com

July 2010

issue 3www.agilerecord.com	 	free	digital	version	 	made	in	Germany



18 www.agilerecord.com

Value-Driven Development 
Principles and Values – Agility 
is the Tool, Not the Master
by Tom Gilb

©
 M

ikhail Tolstoy - Fotolia.com

Introduction

The	Agile	Manifesto	[2]	has	its	heart	in	the	right	place,	I	am	only	
worried	about	its	‘mind’.	And	its	first	principle	“Our highest prior-
ity is to satisfy the customer through early and continuous deliv-
ery of valuable software”,	 is	central	to	the	ideas	in	this	article.	
It	is	not	strange	that	I	agree,	since	many	of	the	Agilistas,	for	ex-
ample	Kent	Beck,	explicitly	point	to	my	1988	book	as	a	source	of	
some	of	their	ideas	[4,	5,	6,	7,	8,	9,	12].

My	 problem	with	 agile	 is	 not	 in	 its	 ideals,	 but	 in	 the	 everyday	
teaching	and	practices	we	see.	What	we	see	is	the	same	problem	
that	has	been	afflicting	all	software	and	IT	projects	long	before	
agile	appeared.	Our	technocratic	culture	has	forgotten	our	stake-
holders	and	their	values.

The	practices	are	far	too	‘programmer	centric’,	and	far	too	little	
‘stakeholder	value’	centric.	The	result	is	that	‘working	software’	
[2]	is	delivered	to	a	‘customer’	[2].	

However,	necessary	values	are	not	necessarily,	and	all	too	rarely,	
delivered	to	all critical stakeholders.	Code	has	no	value	in	itself.	
We	can	deliver	bug-free	code,	that	has	little	or	none	of	the	an-
ticipated	value.	We	can	deliver	software	functions,	as	defined	in	
requirements,	to	the	‘customer’	–	but	totally	fail	to	deliver	critical	
value	to	many	critical	stakeholders.

The	 Opera	 ticket	 system	 at	 the	 magnificent	 new	 Oslo	 Opera	
House	is	a	simple	example.	In	the	old	days,	a	ticket	was	ripped	
off	 a	 stack	 and	 immediately	 delivered	 to	 the	 ticket	 buyer.	 The	
new	system,	at	opening,	took	10–20	minutes	for	the	ticket	sell-
ers	to	negotiate	what	to	do	and	how	to	do	things	like	senior	and	
child	discounts.	With	frequent	access	to	supervisors,	who	were	
not	sure	of	what	or	how.	No	bugs,	all	 the	 functions,	but	some-
thing	was	catastrophically	wrong.	 ‘Working	software’	–	working	
badly.	Thank	God,	the	Agilistas	did	not	design	the	Opera	House	
itself!	That	was	done	by	real	first-class	architects!	[3]	

I	fear	this	article	may	not	correct	the	narrow-mindedness	of	the	
coder	community,	and	my	principles	do	apply	to	a	higher	level	of	
thinking	than	coding.	I	am	going	to	try	to	formulate	a	much	clear-
er	set	of	principles,	a	more	explicit	set;	and	in	the	subsequent	ar-
ticle,	I	will	formulate	clearer	‘values’	than	the	Agilistas	managed	
to	do.	I	have	one	decided	advantage:	I	am	not	subject	to	lowest	
common	denominator	 politics,	 as	 they	were;	 I	 can	 express	my	
own	opinion	–	unopposed!	I	hereby	give	them	specific	permission	
to	update	their	wooly	and	dangerous	ideals	with	these	more	fo-
cussed	ideals.	And	because	they	won’t	(chiselled	in	stone,	unag-
ile	documentation	Manifesto)	I	give	the	reader	the	right	to	spread	
it,	and	update,	and	improve	it,	as	they	like.	

‘Value Principles’

Principle 1. Control projects by quantified critical-few results. 
1 page in total!	(Not	stories,	functions,	features,	use	cases,	ob-
jects,		…)

Most	of	our	so-called	functional	requirements	are	not	actually	re-
quirements.	They	are	designs	to	meet	unarticulated,	higher-level,	
and	critical	requirements	[14].	For	example	the	requirement	to	
have	a	‘password’	is	hiding	the	real	‘Security’	quality	requirement	
[13].	Most	of	the	really	critical	project	objectives	are	almost	al-
ways	buried	in	old	management	slides,	and	formulated	in	a	wooly	
and	un-testable	way.	They	are	never	used	 in	architecture,	con-
tracting	or	testing.	This	is	a	major	cause	of	project	failure	[14].	
Management	and	project	sponsors	are	led	to	believe	the	project	
will	 deliver	 certain	 improvements.	 In	 practice	 the	 agile	 culture	
has	no	mechanism	for	following	up	and	delivering	expected	val-
ues.	Scrum	would	argue	that	that	is	the	job	of	the	product	owner.	
However,	even	top	Scrum	gurus	openly	acknowledge	that	the	sit-
uation	in	practice	is	nowhere	near	what	it	should	be.	We	simply	
do	not	teach	and	practice	the	necessary	mechanisms.	Software	
people	were	always	bad	at	 this,	 but	 agile	did	not	deliver	 clear	
ideals	on	its	own.

Part	1	of	2:
Gilb’s Ten Key Agile Principles to deliver stakeholder 
value, to avoid bureaucracy and to give creative freedom
(Part	2,	Values for Value,	next	issue)



20 www.agilerecord.com

Principle 2. Make sure those results are business results, not 
technical.	Align	your	project	with	your	financial	sponsor’s	inter-
ests!	

People	do	not	do	development	projects	to	get	function,	features	
and	stories.	Yet	these	seem	primary	in	the	current	agile	methods.	
We	need	functions,	stories	and	perhaps	‘features’	to	make	sure	
the	application	will	do	the	fundamental	business	activities	that	
are	expected	(e.g.	‘issue an opera ticket’, ‘give a child discount’).	
But	these	fundamentals	are	never	the	primary	drivers	for	the	in-
vestment	in	a	development	project.	As	a	rule,	the	stakeholders	
already	have	those	functions	in	place,	in	current	systems.	If	you	
look	at	the	project	documentation,	someone	‘sold’	management	
on	better	systems	–	some	improvements.	Faster,	cheaper,	more	
reliable	etc.

These	 are	 always	 improvements	 that	 are	 specifically	 stated	
somewhere,	and	they	are	always	quantifiable,.	Unfortunately,	we	
in	agile	development	avoid	being	specific	at this level.	We	use	ad-
jectives	like	‘better’,	‘improved’,	‘enhanced’	and	leave	it	at	that.	
We	have	learned	long	ago	that	our	customer	is	too	uneducated	
and	 too	stupid	 (common	sense	should	 compensate	 for	 lack	of	
education)	to	challenge	us	on	these	points.	And	they	happily	pay	
us	a	lot	of	money	for	worse	systems	than	they	already	have.

We	 need	 to	make	 it	 part	 of	 our	 development	 culture	 to	 care-
fully	analyze	business	requirements	(‘save	money’),	to	carefully	
analyze	stakeholder	needs	(reduce	employee	training	costs’),	to	
carefully	analyze	application	quality	requirements	(‘vastly	better	
usability’).	We	need	to	express	these	requirements	quantitatively.	
We	need	to	systematically	derive	stakeholder	requirements	from	
the	 business	 requirements.	We	 need	 to	 derive	 the	 application	
quality	 requirements	 from	 the	 stakeholder	 requirements.	 Then	
we	need	to	design	and	architect	the	systems	to	deliver	the	quan-
tified	requirement	levels	on	time.	We	are	nowhere	near	trying	to	
do	this	in	current	conventional	agile	methods.	So	we	consistently	
fail	the	business,	the	stakeholders,	and	fail	to	deliver	the	quality	
levels	required	[15].

Let	me	 be	 clear	 here.	 You	 can	 do	 this	 as	 the	 system	evolves,	
and	it	can	be	expressed	on	a	single	page	of	quantified	top	level	
requirements	[examples	14].	So	don’t	 try	 the	 ‘up	front	bureau-
cracy’	argument	on	me!

Principle 3. Give developers freedom, to find out how to deliver 
those results.

The	worst	scenario	I	can	imagine	is	when	we	allow	real	custom-
ers,	 users,	 and	 our	 own	 salespeople	 to	 dictate	 ‘functions	 and	
features’	to	the	developers,	carefully	disguised	as	‘customer	re-
quirements’.	Maybe	conveyed	by	our	product	owners.

If	you	go	slightly	below	the	surface	of	these	false	‘requirements’	
(‘means’,	not	‘ends’),	you	will	immediately	find	that	they	are	not	
really	requirements.	They	are	really	bad	amateur	design	for	the	
‘real’	 requirements	–	 implied,	but	not	well	defined	 [17].	 I	 gave	

one	example	earlier	(a	real	one,	Ohio),	where	a	‘password’	was	
required,	but	‘security’	(the	real	requirement)	was	not	at	all	de-
fined.

We	are	so	bad	at	this,	 that	you	can	safely	assume	that	almost	
all	 so-called	 requirements	 are	 not	 real	 requirements,	 they	 are	
bad	designs.	 All	 you	 have	 to	 do	 to	 see	 this	 is	 ask:	WHY?	Why	
‘password’?	 (Security,	 stupid!)	 –	 Oh!	Where	 is	 the	 security	 re-
quirement?	Not	 there,	 or	worse,	 stated	 in	management	 slides	
as	‘state-of-the-art	security’	–	and	then	left	to	total	amateurs	to	
design	it	in!

Imagine	 if	 Test	 Driven	 Development	 (TDD)	 actually	 tested	 the	
quality	 levels,	 like	the	security	 levels,	 to	start	with?	Far	from	it;	
and	TDD	is	another	disappointment	in	the	agile	kitbag.

I	analyze	real	requirements	about	once	a	week,	 internationally,	
and	find	very	few	exceptions	–	i.e.	situations	where	the	real	re-
quirements	 are	 defined,	 quantified,	 and	 then	 designed	 (engi-
neered,	architected)	towards.	Agile	culture	has	no	notion	of	real	
engineering	at	all.	Softcrafting	 [4],	sure.	But	not	engineering	–	
totally	alien.

You	cannot	design	correctly	towards	a	vague	requirement	(‘better	
security’).	How	do	I	know	if	a	password	is	a	good	design?	If	the	
security	 requirements	are	clear	and	quantified	 (and	 I	simplify!)	
like	“Less	than	1%	chance	that	expert	hackers	can	penetrate	the	
system	within	1	hour	of	effort”,	then	we	can	have	an	intelligent	
discussion	about	the	4-digit	pin	code	that	some	think	is	an	OK	
password.

I	have	one	client	(Confirmit,	[16])	who	pointedly	refuses	to	accept	
functions	and	features	requirements	from	any	customer	or	sales-
person.	They	focus	on	a	few	critical	product	qualities	(like	usabil-
ity,	intuitiveness)	and	let	their	developers	engineer	technical	so-
lutions	to	measurably	meet	the	quantified	quality	requirements.

This	gets	the	right	job	(design)	done	by	the	right	people	(devel-
opers)	towards	the	right	requirements	(higher	level	overall	views	
of	the	qualities	of	the	application).	They	even	do	their	‘refactor-
ing’	by	iterating	towards	a	set	of	long-term	quality	requirements	
regarding	maintainability,	and	testability.	Probably	just	a	coinci-
dence	that	their	leaders	have	real	engineering	degrees?

Principle 4. Estimate the impacts of your designs, on your 
quantified goals.

I	 take	quantified	 improvement	requirements	for	granted.	So	do	
engineers.	Agilistas	do	not	seem	to	have	heard	of	the	‘quantified	
quality’	 concept.	This	means	 they	cannot	deal	with	specific,	or	
‘high’,	quality	levels.	

The	concept	of	‘design’	also	seems	alien.	The	only	mention	of	de-
sign	or	architecture	in	the	Agile	Manifesto	is	“The best architec-
tures, requirements, and designs emerge from self-organizing 
teams.”	[2].	There	is	some	merit	in	this	idea.	But,	the	Agile	view	



22 www.agilerecord.com

on	architecture	and	design	is	missing	most	all	essential	ideas	of	
real	engineering	and	architecture	[18].

We	have	to	design	and	architect	with	regard	to	many	stakehold-
ers,	many	quality	and	performance	objectives,	many	constraints,	
many	conflicting	priorities.	We	have	to	do	so	in	an	ongoing	evo-
lutionary	 sea	 of	 changes	 with	 regard	 to	 all	 requirements,	 all	
stakeholders,	all	priorities,	and	all	potential	architectures.	Simply	
pointing	to	‘self-organizing	teams’	is	a	method	falling	far	short	of	
necessary	basic	concepts	of	how	to	architect	and	engineer	com-
plex,	large-scale	critical	systems.	Indeed,	even	for	much	smaller	
systems	such	as	the	13-developer	Confirmit	system	[16].

Any	proposed	design	or	architecture	must	
be	compared	numerically,	with	estimates,	
then	measurements,	of	how	well	it	meets	
the	multitude	 of	 performance	 and	 qual-
ity	 requirements;	 and	 to	 what	 degree	 it	
eats	up	resources,	or	threatens	to	violate	
constraints.	I	recommend	the	Impact	Estimation	table	as	a	basic	
method	 for	doing	 this	numeric	comparison	of	many	designs	 to	
many	requirements	[19,	10,	4].	It	has	been	proven	to	be	consis-
tent	with	agile	ideals	and	practices,	and	has	been	given	far	bet-
ter	 reported	results	 than	other	methods	[16].	 If	other	methods	
have	better	results,	they	are	unable	to	report	them	convincingly,	
since	they	do	not	deal	numerically	with	the	values	and	qualities	
of	stakeholders.

If	a	designer	 is	unable	to	estimate	the	many	 impacts	of	a	sug-
gested	design	on	our	requirements,	then	the	designer	is	incom-
petent,	 and	 should	not	be	employed.	Most	 software	designers	
are	by	this	definition	incompetent.	They	don’t	just	fail	to	estimate,	
they	do	not	even	understand	their	obligation	to	try!

Principle 5. Select designs with the best value impacts for 
their costs, do them first.

Assuming	we	find	the	assertion	above,	that	we	should	estimate	
and	 measure	 the	 potential,	 and	 real,	 impacts	 of	 designs	 and	
architecture	 on	 our	 requirements,	 to	 be	 common	 sense.	 Then	
I	would	 like	 to	argue	 that	our	basic	method	of	deciding	 ‘which	
designs	to	adopt’	should	be	based	on	which	ones	have	the	best	
value for money.	 Scrum,	 like	 other	methods,	 focuses	 narrowly	
on	 estimating	 effort.	 This	 is	 not	 the	 same	 as	 also	 estimating	
the	multiple	values	contributed	to	the	top	ten	project	objectives	
(which	‘Impact	Estimation’	does	routinely)	[19].	It	seems	strange	
to	me	that	agile	methods	understand	the	secondary	concept	of	
estimating	costs,	but	never	deal	with	the	primary	concept	of	es-
timating	value	to	stakeholders,	and	to	their	requirements.	There	
is	little	point	in	managing	cost,	if	you	cannot	first	manage	value.	
The	deeper	problem	here	 is	probably	not	Agile	methods,	but	 is	
a	total	failure	of	our	business	schools	to	teach	managers	much	
more	about	finance,	and	nothing	about	quality	and	values	[20].	
If	management	were	awake	and	balanced,	they	would	demand	
far	more	accountability	with	regard	to	value	delivered	by	software	
developers	and	IT	projects.	But	the	development	community	has	
long	since	realized	that	management	was	asleep	on	the	job,	and	

lazily	taken	advantage	of	it.

Principle 6. Decompose the workflow into weekly (or 2% of 
budget) time boxes.

At	one	level,	the	Agilistas	and	I	agree	that	dividing	up	big	projects	
into	smaller	chunks,	of	a	week	or	so,	is	much	better	than	a	Wa-
terfall/Big	Bang	approach	[21].

However,	 I	 would	 argue	 that	 we	 need	 to	 do	more	 than	 chunk	
by	 ‘product	owner	prioritized	 requirements’.	We	need	 to	chunk	
the	value	flow	itself	–	not	just	by	story/function/use	cases.	This	

value	chunking	is	similar	to	the	previous	
principle	of	prioritizing	the	designs	of	best	
value/cost.	We	need	to	select,	next	week	
(next	value	delivery	step	to	stakeholders)	
the	greatest	value	we	can	produce	in	an	
arbitrarily	small	step	(our	team,	working	a	
week).	In	principle	this	is	what	the	Scrum	

Product	owner	should	be	doing.	But	I	don’t	think	they	are	even	
remotely	equipped	to	do	this	well.	They	just	do	not	have	the	quan-
tified	value	requirements	(above),	and	the	quantified	design	esti-
mates	(above)	to	make	it	happen	in	a	logical	manner.

One	dispute	I	do	not	seem	to	have	with	Agilistas	is	about	whether	
you	can	in	fact	divide	any	project	into	small	(2%	of	budget)	deliv-
ery	steps.	I	find	that	you	always	can,	but	there	are	a	lot	of	people	
out	there	who	are	firmly,	and	falsely,	convinced	it	 is	 impossible	
[21].	But	maybe	the	dispute	will	surface	when	they	are	confront-
ed	with	the	need	to	chunk	by	value,	not	by	function.

Principle 7. Change designs, based on quantified value and 
cost experience of implementation.

If	 you	 get	 stepwise	 numeric	 feedback	 on	 the	 actual	 delivered	
value	of	a	design,	compared	to	estimated	and	perceived	value,	
as	is	normal	at	Confirmit	[16],	then	you	will	occasionally	be	disap-
pointed	with	the	value	achieved.	This	will	give	you	the	opportunity	
to	reconsider	your	design,	or	your	design	implementation,	in	or-
der	to	get	the	value	you	need,	irrespective	of	your	previous	lack	
of	understanding.	You	might	even	learn	that	‘coding	alone	is	not	
enough’	to	deliver	value	to	stakeholders.

I	fear	that	this	realistic	insight	possibility	is	largely	lost;	since	the	
agile	methods	neither	quantify	 the	value	 required,	nor	do	 they	
quantify	 the	value	expected	from	a	step	or	a	design	at	a	given	
delivery	step.

The	result	is	that	we	get	stuck	with	bad	designs	until	it	is	too	late.	
To	me,	that	does	not	seem	very	‘agile’.

Principle 8. Change requirements based on quantified value 
and cost experience, new inputs.

Sometimes	 the	 quantified	 quality	 and	 value	 requirements	 are	
overambitious.	It	is	too	easy	to	dream	of	perfection,	and	impos-
sible	to	actually	get	it.	It	 is	too	easy	to	dream	of	great	improve-

Sometimes the quantified 
quality and value requirements 

are overambitious.



23www.agilerecord.com

ment,	without	being	aware	of	its	true	cost,	or	state-of-the-art	limi-
tations.	Sometimes	we	have	to	learn	the	reality	of	what	we	can	or	
should	require	by	practical	experience.	This	is	of	course	normal	
engineering	and	science.	To	learn	technical	and	economic	reali-
ties	step	by	step.

The	agile	community,	however,	has,	as	we	have	pointed	out,	little	
concept	 of	 quantifying	 any	 requirements.	 Consequently,	 they	
cannot	learn	what	is	realistic.	They	will	just	get	what	they	get	by	
chance	or	custom.

If	 they	 actually	 quantified	 their	 key	 requirements,	 and	 if	 they	
measured	the	incremental	numeric	results,	then	if	requirements	
were	either	overambitious	or	unacceptably	costly,	we	would	have	
a	 chance	 to	 react	 quickly	 (agility!).	 Learning	 and	 agile	 change	
are	 threatened	by	 the	 lack	of	quantification	and	measurement	
in	the	normal	development	process.	But	today’s	agile	community	
remains	unconcerned.

Principle 9. Involve the stakeholders, every week, in setting 
quantified value goals.

Agile	methods	refer	to	users	and	customers.	The	terms	used	are	
‘sponsors,	developers,	and	users,	customers’.	 In	systems	engi-
neering	(incose.org)	there	is	no	doubt	that	the	generic	concept	
is	‘stakeholder’.	Some	parts	of	software	engineering	have	been	
adopting	a	stakeholder	paradigm	[22].	But	agile	methods	do	not	
mention	the	concept.	In	real	projects	of	moderate	size,	there	are	
20	to	40	interesting	stakeholder	roles	worth	considering.	Stake-
holders	 are	 sources	 of	 critical	 requirements.	Microsoft	 did	 not	
worry	enough	about	a	stakeholder	called	the	EU	–	a	costly	mis-
take.	In	every	failed	project	–	and	we	have	far	too	many	–	you	will	
find	a	stakeholder	problem	at	the	root.	Stakeholders	have	priori-
ties,	and	their	various	requirements	have	different	priorities.	We	
have	to	keep	systematic	track	of	these.	Sorry,	if	it	requires	mental	
effort.	We	cannot	be	lazy	and	then	fail.	I	doubt	if	a	Scrum	product	
owner	is	trained	or	equipped	to	deal	with	the	richness	of	stake-
holders	and	their	needs	In	fact,	the	PO	seems	to	be	a	dangerous	
bottleneck	in	this	concern.	

However,	it	can	never	be	a	simple	matter	of	analyzing	all	stake-
holders	 and	 their	 needs	 and	 the	 priorities	 of	 those	 needs	 up	
front.	 The	 fact	 of	 actual	 value	 delivery	 on	 a	 continuous	 basis	
will	 change	 needs	 and	 priorities.	 The	 external	 environment	 of	
stakeholders	(politics,	competitors,	science,	economics)	will	con-
stantly	change	their	priorities,	and	indeed	even	change	the	fact	
of	who	the	stakeholders	are.	So	we	need	to	keep	some	kind	of	
line	open	to	the	real	world,	on	a	continuous	basis.	We	need	to	try	
to	sense	new	prioritized	requirements	as	 they	emerge,	 in	 front	
of	earlier	winners.	 It	 is	not	enough	to	think	of	requirements	as	
simple	functions	and	use	cases.	The	most	critical	and	pervasive	
requirements	are	overall	system	quality	requirements,	and	it	 is	
the	numeric	levels	of	the	‘ilities’	that	are	critical	to	adjust,	so	that	
they	are	in	balance	with	all	other	considerations.

A	tricky	business	indeed,	but	–	are	we	going	to	really	be	‘agile’?	
Then	we	need	to	be	realistic	–	and	current	agile	methods	are	not	

even	recognizing	the	stakeholder	concept.	Head	in	the	sand,	 if	
you	ask	me!

Principle 10. Involve the stakeholders, every week, in actually 
using value increments.

Finally	–	the	stakeholders	are	the	ones	who	should	get	value	de-
livered	incrementally,	at	every	increment	of	development.

I	believe	that	this	should	be	the	aim	of	each	increment	and	not	
‘delivering	working	code	to	customers’.	This	means	you	need	to	
recognize	exactly	which	stakeholder	type	is	projected	to	receive	
exactly	which	value	 improvement,	and	plan	 to	have	 them,	or	a	
useful	subset	of	them,	on	hand	to	get	the	increment,	and	evalu-
ate	 the	 value	 delivered.	 Current	 agile	methods	 are	 not	 set	 up	
to	do	this,	and	in	fact	do	not	seem	to	care	at	all	about	value	or	
stakeholders.

In	fact,	developers	would	have	to	consider	the	whole	system,	not	
just	the	code,	in	order	to	deliver	real	value	–	and	coders	feel	very	
uncomfortable	with	anything	outside	their	narrow	domain.	

Isn’t	it	is	amazing	that	they	have	been	given	so	much	power	by	
‘managers’	to	screw	up	society?	■

Here is an overview of my Agile Values, the subject of a more 
detailed article in the next issue.

My 10 Agile Values? © Tom Gilb 2004-10

Simplicity

1.	 Focus	on	real	stakeholder	values

Communication

2.	 Communicate	stakeholder	values	quantitatively

3.	 Estimate	expected	results	and	costs	in	weekly	steps	and	get	

quantified	measurement	feedback	on	your	estimates	the	same	

week	

4.	 Install	real	quantified	improvements	for	real	stakeholders	weekly

5.	 Measure	the	critical	aspects	in	the	improved	system	weekly

6.	 Analyze	deviations	from	value	and	cost	estimates

Courage

7.	 Change	plans	to	reflect	weekly	quantified	learning

8.	 Immediately	implement	the	most	valued	stakeholder	needs	by	

next	week
Don’t wait, don’t study (analysis paralysis), don’t make excuses. 
Just do it!

9.	 Tell	stakeholders	exactly	what	quantified	improvement	you	will	

deliver	next	week

10.	 Use	any	design,	strategy,	method,	process	that	works	well	quan-

titatively	in	order	to	get	your	results	

Be a systems engineer, not a just a programmer (a ‘Softcrafter’).

Do not be limited by your craft background, in serving your 

paymasters.



24 www.agilerecord.com

References

1. Gilb’s Agile Principles and Values
The draft basis for a full paper. Originally formulated for conference 
speeches in November 2004 (London, XP Days Keynote, What’s 
Wrong with Agile?). http://xpday4.xpday.org/slides.php Original 
slides still here. Slides 38-39 the Principles and Values statements.
This is why I am copyrighting from 2004. I literally wrote the values 
and principles at the conference just before my speech, and they 
first appeared in my slides. I have updated the principles to stress 
“values, stakeholders and costs” in 2007 and 2010 for this article.

2. Agile Manifesto:
URL http://agilemanifesto.org/principles.html

3. http://en.wikipedia.org/wiki/Oslo_Opera_House

4. Gilb, Principles of Software Engineering management, 1988.
http://books.google.co.uk/books?q=gilb+principles+of+software+e
ngineering+management&spell=1&oi=spell

5. Mike Cohn, “I’ve always considered Tom to have been the original 
agilist. In 1989, he wrote about short iterations (each should be no 
more than 2% of the total project schedule). This was long before the 
rest of us had it figured out.”
http://blog.mountaingoatsoftware.com/?p=77

6. Comment of Kent Beck on Tom Gilb, Principles of Software En-
gineering Management: “ A strong case for evolutionary delivery – 
small releases, constant refactoring, intense dialog with the custom-
er”. (Beck, page 173). 
In a mail to Tom, Kent wrote: “I’m glad you and I have some align-
ment of ideas. I stole enough of yours that I’d be disappointed if we 
didn’t :-), Kent” (2003)

7. Jim Highsmith (an Agile Manifesto signatory) commented: “Two 
individuals in particular pioneered the evolution of iterative devel-
opment approached in the 1980’s – Barry Boehm with his Spiral 
Model and Tom Gilb with his Evo model. I drew on Boehm’s and 
Gilb’s ideas for early inspiration in developing Adaptive Software De-
velopment. … Gilb has long advocated this more explicit (quantita-
tive) valuation in order to capture the early value and increase ROI” 
(page 4, July 2004).

8. Ward Cunningham wrote in April 2005: Tom -- Thanks for sharing 
your work. I hope you find value in ours. I’m also glad that the agile 
community is paying attention to your work. We know (now) that you 
were out there ahead of most of us. Best regards. – Ward, http://
c2.com

9. Robert C. Martin (Agile Manifesto initial signatory, aka Uncle Bob): 
“Tom and I talked of many things, and I found myself learning a great 
deal from him. The item that sticks most prominently in my mind is 
the definition of progress.”, “Tom has invented a planning formalism 
that he calls Planguage that captures this idea of customer need. I 
think I’m going to spend some serious time investigating this.” from 
http://www.butunclebob.com/ArticleS.UncleBob.TomGilbVisit

10. Gilb, Competitive Engineering, 2005, http://books.google.co.uk/
books?q=gilb+competitive+engineering&btnG=Search+Books

11. Scott Ambler on Amazon reviews, of Competitive Engineering: 
Tom Gilb, the father of the Evo methodology, shares his practical, 
real-world experience for enabling effective collaboration between 
developers, managers, and stakeholders in this book. Although 

the book describes in detail Planguage, a specification language 
for systems engineering, the methodological advice alone is worth 
the price of the book. Evo is one of the truly underappreciated agile 
methodologies and as a result Gilb’s thought-provoking work isn’t as 
well known as it should be, although I suspect that this will change 
with this book. The book describes effective practices for require-
ments and design specification that are highly compatible with the 
principles and practices of Agile Modeling, yet it goes on to address 
planning activities, quality, and impact estimation. I suspect that this 
book will prove to be one of the “must read” software development 
books of 2006.

12. http://leansoftwareengineering.com/2007/12/20/tom-gil bs-
evolutionary-delivery-a-great-improvement-over-its-successors/
“But if you really want to take a step up, you should read Tom Gilb. 
The ideas expressed in Principles of Software Engineering Manage-
ment aren’t quite fully baked into the ADD-sized nuggets that today’s 
developers might be used to, but make no mistake, Gilb’s thinking on 
requirements definition, reliability, design generation, code inspec-
tion, and project metrics are beyond most current practice.” Corey 
Ladas

13. Re Security Requirements:
http://www.gilb.com/tiki-download_file.php?fileId=40
A paper on how to quantify security requirements.

14. Top Level Objectives:
http://www.gilb.com/tiki-download_file.php?fileId=180
A handful of real case studies regarding top level project require-
ments, or lack of them.

15. One example of systematic quantitative analysis and connection 
of business, stakeholder and quality levels of requirements in the 
Norwegian Post case study by Kai Gilb. http://www.gilb.com/tiki-
download_file.php?fileId=277

16. Confirmit Case: Paper 
http://www.gilb.com/tiki-download_file.php?fileId=32
Confirmit case slides:
http://www.gilb.com/tiki-download_file.php?fileId=278

17. Real Requirements: How to find out what the requirements really 
are, paper.
http://www.gilb.com/tiki-download_file.php?fileId=28

18. Architecture, a View.
http://www.gilb.com/tiki-download_file.php?fileId=47

19. Design Evaluation: Estimating Multiple Critical Performance and 
Cost Impacts of Designs
http://www.gilb.com/tiki-download_file.php?fileId=58

20. Hopper: The Puritan Gift: Reclaiming the American Dream 
Amidst Global Financial Chaos’, http://www.puritangift.com/
This is not least a direct and deep attack on Business Schools to 
teach much more than a narrow financial agenda (aka greed), for-
getting the broader set of values that lead to long-term financial 
soundness.
http://twitter.com/puritangift

21. Decomposition:
http://www.gilb.com/tiki-download_file.php?fileId=41

22. Susanne Robertson’s several papers regarding stakeholders:
http://www.systemsguild.com/GuildSite/Guild/Articles.html



25www.agilerecord.com

Tom Gilb
 (born 1940, California) has 

lived in UK since 1956, 
and Norway since 1958. 
He is the author of 9 pub-
lished books, including 
Competitive	Engineering:	A	
Handbook	For	Systems	En-
gineering,	 Requirements	
Engineering,	and	Software	
Engineering	 Using	 Plan-

guage, 2005.

He has taught and consulted world-wide for decades, 
including having direct corporate methods-change in-
fluence at major corporations such as Intel, HP, IBM, 
Nokia. He has had documented his founding influence 
in Agile Culture, especially with the key common idea 
of iterative development. He coined the term ‘Software 
Metrics’ with his 1976 book of that title. He is co-author 
with Dorothy Graham of the static testing method ‘Soft-
ware Inspection’ (1993). He is known for his stimulating 
and advanced presentations, and for consistently avoid-
ing the oversimplified pop culture that regularly entices 
immature programmers to waste time and fail on their 
projects.

More detail at www.gilb.com.

> About the author

Subscribe at

www.agilerecord.com


