
//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Chapter

1

PLANGUAGE BASICS AND
PROCESS CONTROL
The Purpose of Planguage

GLOSSARY CONCEPTS

Planguage

Standards

Rule

Process

Procedure

Task

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.1 Introduction: Why We Need a Different
‘Systems Engineering’ Approach

As the rate of technological change has ‘heated up,’ I am sure we have

all seen that, increasingly, nobody ‘knows all the answers.’ Previously

we could rely on comparatively stable environments (technology,

workforce, experienced people, politics and economics). People knew

how to solve problems because they had solved similar ones before. In

addition, the concept of learning by apprenticeship was valid; ‘mas-

ters’ could pass on their wisdom over a time span of years.

Things are currently moving so fast that it is dangerous to assume

there is any first-hand knowledge of the technology we are going to

use, or of the markets we are going to sell to. Even the organizational

and social structures that we are targeting are constantly changing.

Authors such as Tom Peters have long since clearly documented these

trends and threats (Peters 1992).

So we have to find out ‘what works now’ by means of practice, not theory.
We need to develop things in a different way. We have to learn and to

change, faster than the competition.

The fundamental concepts needed now in systems engineering

include:

Learning through Rapid Feedback

Feedback is the single most powerful concept for successful projects.

Methods that use feedback are successful. Those that do not, seem to

fail. Feedback helps you get better control of your project, by provid-

ing facts about how things are working in practice. Of course, the

presumption is that the feedback is early enough to do some good.

This is the main need: rapid feedback.

Dynamic Adaptability

Projects have to be able to respond to feedback and also to be able

to keep pace weekly or monthly with changing business or organi-

zational requirements. Projects must continuously monitor the rele-

vance of their current work. Then they must modify their

requirements and strategies accordingly. Any product or organiza-

tional system should be continuously evolving or it dies. Coping

with external change during projects and adapting to it during
projects is now the norm, not the exception. Stability would be

nice, but we can’t have it!

Planguage Basics and Process Control 3

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Capturing the Requirements

It is true of any system that there are several Critical Success Factors.
They include both performance requirements (such as serviceability,

reliability, portability and usability) and limited resource requirements

(such as people, time and money). Projects often fail to specify these

critical requirements adequately:

. not all the critical success factors are identified

. no target numeric values for survival and success are stated

. variations in targeted requirements for differing times and differing

places, are not addressed:

o the effect of peak loads, or system growth, on the required levels,

is not taken into account
o the concept of very different attribute levels, being required by

different parts of the system, or by different stakeholders, is not

considered

. no practical ways to measure the results delivered to stakeholders are

specified alongside the requirement specification.

The result is that our ability to manage successful value delivery is

destroyed from the outset. It is impossible to engineer designs to meet

non-specified or ambiguous requirements. It also is impossible to

track changes for such ill-specified requirements.

Focus on Results

The primary systems engineering task is to design and deliver the best

technical and organizational solutions, in order to satisfy the stake-

holders’ requirements, at a competitive cost. Projects must ensure that

their focus is on delivering critical and profitable results. Albert

Einstein is quoted as saying: ‘‘Perfection of means and confusion of

ends seem to characterize our age.’’1 Unfortunately, this still appears

true today. It is the delivery of the required results from a system that

1999 Jan

Feb Mar
Apr

May

‘Then’ ‘Now’

Figure 1.1
Our requirements are changing faster due to external changes.

1 Calaprice, Alice [Editor]. 2000. The Expanded Quotable Einstein. Princeton Univer-

sity Press. ISBN 0-691-07021-0.

4 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

counts. The process used and the technology selected are mere tools in

the service of the results.

Interdisciplinary Communication

Clear communication amongst the different stakeholder groups is

essential. Common problems include:

. ambiguity, due to specification that lacks precise detail

. critical specifications being ‘lost’ in overwhelming detail

. technical specification being unintelligible to the management, who

reviews it
. inadequate tracking of specification credibility: its source, status and

authorization level.

Leadership and Motivation

Clear vision makes a huge difference. Clear vision gives a common

focus for logical decision-making. When people understand the over-

all direction, they tend to make good local decisions. Only the critical

few decisions need to be made at the top. It is important for all team

members to be able immediately to channel their energies in a true

common team direction.

Receptiveness to Organizational Change

It is also important for system engineers to know that their organiza-

tional culture really supports improvement in systems engineering

methods. In other words, that people are actively encouraged to look

for improvements and to try out new solutions. Positive motivation

can be everything! It is not a case of demanding improvement, more a

case of supporting and rewarding people who seek it.

Continuous Process Improvement

The quality guru, W. Edwards Deming considered that: ‘‘Eternal

process improvement, the Plan-Do-Study-Act (PDSA) cycle, is

necessary as long as you are in competition.’’ Having best-practice

systems engineering standards in place, measuring conformance to

them and continually trying to improve them is necessary if you are

to compete well.

The only thing that should not change is a great change process.

Planguage Basics and Process Control 5

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Practical Strategies for Systems Engineering

Planguage2 (the specification language and methods described in this

book) aims to support all the above concepts with practical ideas and

methods; it has numerous practical strategies for projects to adopt.

In-built in all these Planguage strategies is risk management. Handling

of risk is fundamental to Planguage. I do not believe that risk manage-

ment should be a separate discipline. We can deal with risks better when

we do so in every detailed specification and plan, and in every systems

Practical Strategies for Risk Management

1. Quantify requirements: All critical performance and resource

requirements must be identified and quantified numerically.

2. Maximize profit, not minimize risk: Focus on achieving the max-

imum benefits within budget and timescales rather than on attempting

to eliminate all risk.

3. Design out unacceptable risk: Unacceptable risk needs to be

‘designed out’ of the system consciously at all stages, at all levels in

all areas, for example, architecture, purchasing, contracting, devel-

opment, maintenance and human factors. This means selecting

lower-risk options.

4. Design in redundancy: When planning and implementing projects,

conscious backup redundancy for outmaneuvering risks is a neces-

sary cost.

5. Monitor reality: Early, frequent and measurable feedback from rea-

lity must be planned into your development and maintenance pro-

cesses, to identify and assess risks before they become dangerous.

6. Reduce risk exposure: The total level of risk exposure at any one time

should be consciously reduced to between 2% and 5% of total budget.

7. Communicate about risk: There must be no unexpected risks. If

people have followed guidelines, and are open about what work they

have done, then others will have the opportunity to fight risks construc-

tively. Where there are risks, then share that information.

8. Reuse what you learn about risk: Standards, and other forms of

work process guidance, must capture and assist good practice. They

must be subject to continuous process improvement.

9. Delegate personal responsibility for risk: People must be given

personal responsibility in their sector for identification and mitigation

of risks.

10. Contract out risk: Make vendors contractually responsible for risks.

They will give you better advice and services as a result.

Figure 1.2
Practical strategies for risk management.

2 Pronounced like ‘language’ with a ‘p’ as in ‘plan.’

6 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

implementation process. Figure 1.2 gives a list of strategies for risk

management. All these strategies can be found in some aspect of

Planguage.

1.2 Practical Example: Twelve Tough Questions

Here are some probing questions for controlling risk. They are power-

ful tools, which will help you in your everyday work. I call them the

‘Twelve Tough Questions’ – see the next page.

These ‘Twelve Tough Questions’ will help you find out ‘what people

really know.’ They will help you find out how strong a foundation

their opinions and recommendations are based on. From the answers

to these questions – or maybe the lack of answers – you can see risks;

and what needs to be done to reduce them. Try asking these questions

when you next review a proposal, or at your next decision-making

meeting. You will probably see the power of them immediately. Get

your management to ask these questions.

Copy this next page (permission granted as long as you include copyright).
Carry it with you to your next meeting or frame it on your wall. Use it to
arrest fuzzy thinking in your company and client documents.

Planguage Basics and Process Control 7

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Twelve Tough Questions

1. Numbers
Why isn’t the improvement quantified?

2. Risk
What is the degree of risk or uncertainty and why?

3. Doubt
Are you sure? If not, why not?

4. Source
Where did you get that information? How can I check it out?

5. Impact
How does your idea affect my goals and budgets, measurably?

6. All critical factors
Did we forget anything critical to survival?

7. Evidence
How do you know it works that way? Did it ‘ever’?

8. Enough
Have we got a complete solution? Are all requirements satisfied?

9. Profitability first
Are we planning to do the ‘profitable things’ first?

10. Commitment
Who is responsible for failure, or success?

11. Proof
How can we be sure the plan is working, during the project,
early?

12. No cure, no pay
Is it ‘no cure, no pay’ in a contract? Why not?

� Tom Gilb 2000–5
A full paper on this is available at www.Gilb.com

8 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.3 Language Core: Planguage Basics and
Process Control

Planguage consists of a specification language and a corresponding

set of process descriptions (or methods). The Planguage language
terms are used together with the Planguage processes for specifica-

tion, analysis, design (also called planning, engineering, architecture

or problem-solving) and management of processes, projects or

organizations.

Planguage Specification Language

The specification language (usually called simply ‘Planguage’) is used

to specify requirements, designs and project plans. Planguage consists

of the following elements:

. A set of defined concepts. The Planguage Glossary contains the

master definition of concepts as used within Planguage (Examples

of concepts: objective, goal and function).
. A set of defined parameters and grammar. The Glossary also

contains the set of defined Planguage parameters (Examples of

parameters: Scale and Meter) used for specification.

The grammar consists of Planguage syntax rules. These syntax rules

are given in this book by example, rather than being formally stated.

The aim is to show ‘best known practice’ of how the Planguage

parameters should be specified to be useful. Note the examples

given are only ‘reasonable examples,’ the reader should feel free to

add to them, to improve them and to tailor them.

. A set of icons. Each icon is used for graphical representation of a

specific Planguage concept and/or parameter. Icons may either be

keyed in on a keyboard, or drawn. For example, <fuzzy angle
brackets> are used to indicate a ‘poor’ definition in need of improve-
ment and, the icon, ‘< >’, is in the Glossary under ‘Fuzzy’.

Relevant subsets of the Planguage language are introduced throughout

the book in the Language Core section of the chapters. More formal

definitions can also be found in the Glossary.

Planguage Process Descriptions

The Planguage process descriptions (or methods) provide recom-

mended best practice for carrying out certain tasks. The reader

should consider these defined processes as useful ‘starter kits’, but

should plan to extend, improve and tailor them to their needs,

Planguage Basics and Process Control 9

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

purposes and experiences. The set of Planguage process descriptions

is as follows:

. Requirement Specification (RS). (See Chapter 2 and sub-processes in
Chapters 3, 4, 5 and 6)

. Design Engineering (DE). Design Engineering is concerned with

identifying, selecting and sequencing delivery of design ideas (see
Chapter 7)

. Specification Quality Control (SQC). SQC is used for evaluating

the quality of any technical document and, for identifying and

preventing defects (see Chapter 8)
. Impact Estimation (IE). IE is used for evaluating designs and

monitoring the impact of results on the goals and budgets. It plays

a central role in Design Engineering (see Chapter 9)
. Evolutionary Project Management (EVO, also known as Evo). Evo

is used to deliver results in a series of high-value (highest value/best

benefit to cost ratio delivered earliest), small (say, less than 2% of

total project development time) evolutionary steps (see Chapter 10).

Note :

1. SQC measures the degree to which a specification follows its specifica-
tion rules. It directly measures the ‘loyalty to engineering standards.’

2. Impact Estimation and Evolutionary Project Management measure
the power of the design ideas in the marketplace.

The process descriptions for the above methods can be found in the

Process Description section of the relevant chapters.

Standards

As Tom Peters pointed out in Liberation Management (Peters 1992),

the only remaining reason for having a very large organization is to

share ‘know-how’ about best practices. Standards are an important

form of sharing such know-how. (Other examples would be patents,

market knowledge and specific customer knowledge.)

Standards can be termed ‘Work Process Standards.’ They can be

usefully classified into specific types of guidance as follows:

. Policies

. Rules

. Process descriptions

. Forms and document formats

. Defined concepts (such as found in the Planguage Glossary)

. Language conventions (such as Planguage grammar)

. Work rates (such as ‘checking rate’)

. Others.

10 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

For specific examples, see Sections 1.4, ‘Rules’ and 1.5, ‘Process

Description.’

Standards can be generic, or can be tailored to specific tasks (for

example, to contracting, testing, writing and installation) and tailored

to specific stakeholder environments (for example, sub-supplier,

novice, top management and customer).

Planguage Specification Language

Specification
Quality Control

Process.SQC

Impact
Estimation

Process.IE

Process.DE

Design Engineering

Production
Cycle

Development
Cycle

Strategic Management
Cycle

Evolutionary Project Management
Process.EVO

Process.SM

Planguage
Concepts

Planguage
Icons

Planguage
Parameters and

Grammar

Planguage Processes

Requirement
Specification

Process.RS and
sub-processes

Delivery
Cycle

Process.DC

Result Cycle

Implementation Cycle

Figure 1.3
Diagram of the components of Planguage. Even more detailed, and more correct (as a
consequence of being able to use the feedback from practical experience and, from any
information being up to date) specification of the requirements and design ideas is likely to
occur within the frequent development cycles. Detailed explanation of the Evo result
cycles can be found in Chapter 10 (and in the glossary).

Planguage Basics and Process Control 11

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Standards must be brief and non-bureaucratic. I favor, as a basic

rule, limiting standards to one-page in length. I have found that my

clients stick to a one-page format, finding it very practical. When

there is only one page, detail cannot overwhelm people. For exam-

ple, only the 20 to 25 or so ‘most important’ standards ideas can fit

on a page (to be adopted, new standards must force bad ones ‘off

the page’).

Standards must change as experience dictates. The owners of the

standards must update the standards specification when better prac-

tices are discovered, so that new knowledge is shared and is rapidly put

into use. People should be taught and motivated to use the standards,

unless they can justify otherwise.

Rules

Rules are standards that provide specific guidance to follow when

carrying out a process. They are also used in Specification Quality

Control (SQC) to define and detect major defects in a specification.

Individual rules should justify their presence in standards by the

potential resource savings that can be expected from using them.

Process Descriptions

Process descriptions (or methods) are standards that describe the

best practice for carrying out work tasks. The process format used

for Planguage process descriptions consists of three basic elements:

. Entry Conditions – to determine whether it is wise to start the

procedure
. Procedure – specifying for a task what work needs to be done and

how best to do it
. Exit Conditions – to help determine if the work is ‘truly finished’.

Entry Conditions

It is not good enough to allow employees to simply plunge into a work

process and ‘just do it.’ The conditions must be right for success, not

ripe for failure. Entry conditions are a list of what an organization has

learned are the necessary prerequisites for avoiding wasted time and,

for avoiding the failure of a specific work process.

Before beginning any procedure, its entry conditions must be checked.

If the entry conditions are not met, then starting the procedure is high

risk. It is likely to be better to remove the negative conditions before

12 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

proceeding. Entry conditions should be built on experience of what is

high risk and high cost.

Procedure

A procedure is a sequenced list of instructions, describing how to carry

out the task. It documents the current recommended best practice.

EXAMPLE P3: For each design idea, estimate its numeric impact on the Scale of all the

attributes.
P4: Continue identifying/specifying or refining design ideas until the specified safety
margin is reached.

Exit Conditions

Exit Conditions are used to evaluate if the task is reliably and eco-

nomically completed. They specify the safe and economic conditions

for exit from a process to a ‘next’ process. Exit conditions are also built

on experience from previous releases to the next work process.

Input
Documents
including

Rules

Entry
Conditions

Exit
ConditionsProcedure

Entry
Process

‘E’

Exit
Process

‘X’

Task
Process

‘T’

Output
Documents

Other
Processes

Other
Processes

Figure 1.4
Diagram of a simple process showing its sub-processes and its relationship to other pro-
cesses and documents. The input documents for each process include the rules, the entry
conditions, the procedure and the exit conditions. The diagram also shows how the ‘ETX’
concept for a process is derived. A rectangle is the symbol for a ‘written document.’ A
rectangle with arrow is a ‘process’ symbol. An example of such a process could be
‘Requirement Specification.’

Planguage Basics and Process Control 13

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Table 1.1 Description of some of the main generic Planguage parameters, concepts and icons.

Basic Planguage Parameters, Concepts and Icons

Concept or
Parameter

Meaning Used for Note also

Planguage
Term

A term that is part of
Planguage.

Structuring
specifications.

Glossary contains a set
of Planguage terms.

User-Defined
Term

A term defined by users. Identifying ‘local’
user terms.

It should be short and
descriptive.

Type: Type or category of a
term.

Declaring the Planguage
category of a user-
defined term.

Type can be implicitly
or explicitly declared.

Tag: An identifier for a
Planguage term or a
user-defined term.

Providing a unique
‘local’ reference to a
term.

Hierarchical tags can be
used. These can be used
in full (very explanatory)
or abbreviated depending
on context.

Gist: A rough, informal, brief
description or summary.

Getting consensus
initially. Summarizing
finally.

Usually not a precise,
detailed or complete
definition. For a scalar
parameter, ‘Ambition’
can be used to express
the ambition level.

Description: A description. Explaining terms. Level of explanation
detail should match the
context.

Definition: A definition, usually
expressing the
relationship to other
user-defined terms.

Defining terms. Synonyms are ‘Defined’
and ‘Defined As.’

Version: A date stamp. A time
stamp can optionally be
added.

Identifying a specific
instance of a
specification.

For example: ‘Version:
October 7, 2004 10:20.’

Stakeholder: Any person or
organizational group
with an interest in, or
ability to affect, the
system or its
environment.

Understanding who has
to be consulted or
considered when
specifying requirements.

Usually a set of several
different stakeholders is
identified.

Authority: The stakeholder or role
responsible for
determining status and
enforcing use.

Identifying where the
power resides.

The authority has the
power to determine and
change a specification.
Also to control its
availability.

Owner: The stakeholder or role
responsible for the
overall specification
itself.

Identifying the
specification owner.

The owner usually is
responsible for the
updating of a
specification.

Continued

14 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Table 1.1 Continued

Basic Planguage Parameters, Concepts and Icons

Concept or
Parameter

Meaning Used for Note also

Readership: The stakeholder(s) or
role(s) who will or
might use the
specification.

Identifying the
specification user(s)
or audience level to
communicate to.

A synonym is ‘Intended
Readership.’ A parameter
such as ‘Specification
User’ or ‘Process User’
could be used instead.

Status: The approval level of
the specification.

Identifying which
version of the
specification is being
used.

For example: ‘Status:
Draft.’ See glossary for
additional terms to express
approval level.

Quality
Level:

The quality level of the
specification in relation
to its rules.

Stating the
estimated defect
density in a
specification.

For example: ‘Quality
Level: 3 remaining major
defects/page.’

Qualifier:
[. . .]

A qualifier adds more
specific detail to the
specification regarding
time, place and event
conditions, [when,
where, if].

States the conditions
applying to a
specification for it to
be valid: the [time,
place, event]
conditions.

The keyed icon for
Qualifier is ‘[]’ as in
‘[Qualifier Condition 1,
Qualifier Condition 2,
. . . Qualifier Condition
n].’ The ‘[. . .]’ icon is
used far more than the
parameter, Qualifier.

Source:
<-

Where exactly a given
specification or part of
it, originated.

Used to enable
readers to quickly
and accurately check
specifications at their
origin.

The icon for source is ‘<-’.
Usually the icon is used in
specifications, rather than
the term ‘Source’.

Assumption: Any assumption that
should be checked to
see if it is still applies
and/or is still correct.

Risk Analysis Other more precise
parameters should be
used if possible, for
example, Dependency,
Risk.

Note: ‘‘ . . . ’’ Any additional
comments or notes,
which are relevant.

Used to provide
additional
information likely to
help readers.

Any notes are only
commentary and are not
critical to a specification.
‘Comment:’ could be
used as an alternative.

Fuzzy
< . . .>

Identifies a term as
currently defective and
in need of improvement

Alerting the reader
and author that the
term is not
trustworthy yet or
lacks detail.

The keyed icon for fuzzy
is ‘<imprecise word>’.
The ‘<>’ icon is always
used.

Set
Parentheses
{ . . . }

Identifies a group of
terms, linked in some
way, forming a set or a
list.

Explicitly shows that
a set of terms is
being specified.

The context explains why
the terms are a set.
Usually, all terms are of
the same Type.

Planguage Basics and Process Control 15

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.4 Rules: Generic Rules for Technical and
Management Specification

Here are some very basic generic rules, for any type of specification.

You will find that in spite of their ‘obviousness’ and simplicity, they

are quite powerful. Most of my clients use some variation of these

‘by choice’.

Tag: Rules.GS.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Note: These rules are rather lengthy, as additional explanatory text is
present. Readers should abbreviate as appropriate.

R1:3 Tag: Specifications must each have a unique identification tag.

R2: Version: Specifications must each have a unique version identifier.

By default, use the date (and maybe also, time), as the version

identifier.

EXAMPLE Version: October 7, 2004 09:00.

R3: Unique: Specifications shall exist as one official ‘master’ version
only. Then they shall be re-used, by cross-referencing, using their

identity tag. Duplication (‘copy and paste’) should be strongly dis-

couraged.

R4: Owner: The person or group responsible for authorizing a speci-

fication should be stated (‘Authority’ would be an alternative or

supplementary parameter, though it is a different concept!).

R5: Status: The status for using a specification should be given.

EXAMPLE Status: SQC Exited.

R6: Quality Level: All specifications shall explicitly indicate their

current quality level, preferably in terms of the measure of ‘number

of remaining major defects/page’ against the relevant official standard

which applies.

3 The number is a rule tag (or identification, if you like) and the word after the colon is

an equivalent alternative tag for referencing the rule. The following references are

possible Rules.GS.R1, Rules.GS.Tag, Standards.Rules.GS.Tag and other combinations.

The dot indicates that what follows is part of a set of things named by the term

preceding the dot. For example, GS is part of a set of things called Rules.

16 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

EXAMPLE Quality Level: Less than 1 remaining major defect/page.

EXAMPLE Quality Level: Undetermined.

R7: Gist: Where appropriate, specifications should be briefly sum-

marized by a Gist statement. For performance requirements, ‘Ambi-

tion’ is a preferred alternative.

R8: Type: The type of every concept within specifications should be

clear. It should be explicitly specified after every new parameter tag

declaration unless the type will be immediately obvious to the

intended readership.

EXAMPLE ABC1: Type: Function.

R9: Clear: Specifications should be ‘clear enough to test’ and ‘unam-

biguous to their intended readers.’

R10: Simple: Complex specifications should be decomposed into a set

of elementary, tagged specifications.

R11: Fuzzy: When any element of a specification is unclear then it

shall be marked, for later clarification, by <fuzzy angle brackets>.

R12: Comment: Any text which is secondary to a specification,

and where no defect in it could result in a costly problem later,

must be clearly identified. It can be written in italic text statements,

or headed by suitable warning (such as Note, Rationale or

Comment), or written in ‘‘quotes,’’ and/or moved to footnotes.

Non-commentary specification shall be in plain text. Italic can be

used for emphasis of single terms in non-commentary statements.

Readers should be able visually, at a glance without decoding

the contents, to distinguish between ‘critical’ and ‘non-critical’
specification.

R13: Source: Specification statements shall contain information

about their source of origin. Use the ‘<-’ icon and state the source

person and the date, or the source document with detailed statement

reference.

R14: Assumptions: All known assumptions (and any relevant

source(s) of any assumptions) should be explicitly stated.

The ‘Assumption’ Planguage parameter can be used for this purpose. But
there are also a number of alternative ways, such as {Risk, Source,
Impacts, Depends On, Comment, Authority, [Qualifiers], If}. In fact,
any reasonable device, suitable for the purpose, will do.

Planguage Basics and Process Control 17

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

R15: Risks: You must specify any factors, which constitute known or

potential risks. You must identify risks explicitly.

There are a wide variety of devices for doing so, including the explicit
Planguage statement: ‘Risks.’

EXAMPLE Goal [Market Y]: 60%.

Risks: Market Y will have more competition than now.

Requirement
Specification

[Updated]

Requirement Specification

Specify Requirements

Standards:
Rules.GS
Rules.DS
Rules.IE

and relevant
Process

Descriptions

Design
Specifications

[Current]
and

Evolutionary
Plan

[Current]

Requirement
Specification

[Updated]

Design
Specifications

[Updated]
and

Evolutionary
Plan

[Updated]

Changes to
Requirements

(Feedback)

List of
Stakeholders

and,
Statement of
Requirements

or Requirement
Specification

[Current]

Standards:
Rules.GS
Rules.RS
Rules.FR
Rules.SR
Rules.SD

and relevant
Process Descriptions

Changes to
Requirements

(Feedback)

Determine Design: {Analyze Requirements,
Find & Specify Design Ideas,

Evaluate Design Ideas (Impact Estimation),
Select Design Ideas & Produce Evo Plan}

• Process.FR
• Process.PR
• Process.SD
• Process.RR

Process.RS

Process.DE

Design Engineering

• Others
• Process.IE

Notes:
Iteration of the processes has been allowed for by including existing specifications as potential inputs. Qualifying
square brackets have been used around descriptive words, which are added to assist understanding. The aim is
to show how the rules and process descriptions discussed in this book fit together. This diagram shows
procedure steps P1 and P2 of the Generic Project process (Process.GP). These same processes are used
during Manage Evolutionary Project (Process.GP.P3) – that is during Evolutionary Project Management – in
order to update the requirements, the ideas and the Evo plan (see Figure 1.6).

The abbreviations used in this figure (and in the rest of the CE book) are as follows:

GP Generic Project RR Resource Requirements
GS Generic Specification DS Design Specification
RS Requirement Specification DE Design Engineering
FR Function Requirements IE Impact Estimation
SR Scalar Requirements EVO Evolutionary Project Management
PR Performance Requirements SM Strategic Management
SD Scale Definition DC Delivery Cycle

Figure 1.5
An overview of the Planguage-defined requirement and design processes.

18 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.5 Process Description: Generic Project

Process: Generic Project

Tag: Process.GP.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Project
Report

Process EVO

• Process.RS
• Process.FR
• Process.PR
• Process.SD
• Process.RR
• Process.DE
• Process.IE
• Process.SM
• Process.DC
• Others

Evolutionary Project Management

Manage Evolutionary Project

Perform
Result
Cycle

Feedback
Results

Plan

Do

Study

Act

Requirement
Specification
[Updated],

Design Specifications
[Updated] and

Evolutionary Plan
[Updated]

Requirement
Specification

[Initial],
Design

Specifications
[Initial] and

Evolutionary Plan
[Initial]

Standards:

Rules.GS Rules.SD
Rules.RS Rules.DS
Rules.FR Rules.IE
Rules.SR Rules.EVO

and any relevant
Process Descriptions

Figure 1.6
An overview of the defined Planguage process, which supports Evolutionary Project
Management, Process.GP.P3 or in more detail, Process.EVO in Chapter 10.

Planguage Basics and Process Control 19

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Gist: A process specification giving an overview of the entire Plan-

guage process for a project.

Entry Conditions

E1: The Generic Entry Conditions apply (see separate specification for
Generic Entry Conditions below).

The raw requirements should have been gathered. The known sources

of requirements should be identified and listed. These include:

. all the critical stakeholders

. all the currently identified requirements with detailed sources (use

‘<-’ and, state who or which document) and any justification for

these requirements (use the Rationale parameter).

Procedure

P1: Specify Requirements [Initial]: Specify the initial top-level

requirements (see Chapters 2, 3, 4, 5 and 6 as appropriate).

P2: Determine Design [Initial]:

P2.1: Analyze the Requirement: Consider the stakeholder value and

the delivery order for the requirements. Identify any constraints and

any conflicts. Establish the scope for the system design.

P2.2: Find and Specify Design Ideas: Identify and specify the initial

top-level design ideas to meet the requirements (see Chapter 7).

P2.3: Evaluate Design Ideas: Estimate the impacts of all the design

ideas on all the requirements (see Chapters 7 and 9).

Re-do P1 to P2.3, until a reasonable balance between requirements

and costs is obtained.

P2.4: Select Design Ideas and Produce Evo Plan: Produce an initial

overview, long-term evolutionary plan of the sequence of Evo steps.

That is, a plan for starting early delivery of required results by imple-

menting the design ideas in a series of small result cycles. Each result

cycle using, say 2% of total project time. (That is, each result cycle is an
Evo step. Note, an Evo step contains one or more design ideas.)

Determine the sequence of step delivery of the potential Evo steps. Do

this by calculating for each potential step, the performance to cost

ratio, or ideally you would use the ‘stakeholder view’ of the value to

cost ratio (the value being the benefits the stakeholders consider they

will obtain from the system improvements). Ideally, sequencing

should be in order of descending ratios, but consideration needs to

be given to any associated dependencies (see Chapters 7 and 10). Note
this plan will be modified, within the result cycles, using the feedback
provided by the results of implementing the design ideas (see below).

20 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

P3: Manage Evolutionary Project: Iterate Plan-Do-Study-Act

(PDSA) evolutionary result cycles until the exit conditions (below)

are met. Each result cycle implements the next Evo step and provides
feedback to modify the design, and maybe, to adjust requirements to more
realistic levels (within each result cycle, the processes Specify Requirements
and Determine Design are reiterated to carry out any more detailed work
required as part of the implementation of the Evo step, and to cater for any
changes required as a result of the feedback), (see Chapter 10, ‘Evolu-
tionary Project Management’).

Note: When using Evo, as long as the Evo result cycles are delivering to the
planned levels, the need for initial management review is considerably
decreased (if not eliminated) as the resource commitment for each delivery
step is only about 2% of the project total.

Exit Conditions

X1: The Generic Exit Conditions apply (see separate specification for

Generic Exit Conditions below).

X2: Cease doing Evo steps (P3) when either the stakeholder require-

ments are met, or resource budgets are exhausted. In other words, stop

when the performance requirements are met at planned levels, or

when resources (budgets) are ‘used up’ at their planned levels.

Generic Entry and Exit Process and Conditions

Here is a process that can be used as a generic entry process or a

generic exit process. The benefit of having one master generic process

is that it is easier to review and update.

Process: Generic Entry or Generic Exit

Tag: Process.GE.E or Process.GE.X.

Version: October 7, 2004.

Owner: Systems Engineering Process Owner.

Status: Draft.

Gist: A generic process description that applies by default to all entry

and exit processes.

Procedure

P1: Check all the conditions that apply.

P2: Note which conditions cannot be met.

Planguage Basics and Process Control 21

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

P3: Decide if we can or must ignore specific failed conditions

(waver).

P4: Attempt to correct, or help others to correct, any failed conditions

in need of correction.

P5: Report status of the process in writing.

P6: Help management understand the reasons for and the risks of

ignoring the problem of any failed or waved conditions.

P7: If management insists on overriding your advice, make sure

the responsible manager, after being informed of the risks, is

documented as overriding the formal process intentionally. (Make

sure we know who to blame later and then they take the respon-

sibility.)

P8: For exit only: Ensure any process improvement suggestions have

been submitted to the relevant process owners.

P9: Allow exit/entry when all conditions are either met or

waived.

Note: To simplify matters, no entry or exit conditions have been specified
for this process!

Generic Entry Conditions

Scope: For systems engineering, all specification entry processes.

Owner: Systems Engineering Process Owner.

User: Specification Author [Default User: SQC Team Leader].

E1: All logically necessary input information for complete and correct

specification is available to the specification author. This includes

up-to-date documentation regarding specification standards.

E2: All input documents have successfully exited from their own

quality control process.

Note: This usually implies between 0.2 and 1 maximum remaining major
defect(s)/page (A page is 300 words of non-commentary text). ‘Remaining
major defects’ is explained in Chapter 8, ‘Specification Quality Control.’

E3: The specification author is adequately trained or, assisted by a

qualified person.

E4: The specification author agrees that they are ready to successfully

carry out the specification work.

E5: There is appropriate approval, including funding, for the specifi-

cation process to proceed.

22 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Generic Exit Conditions

Scope: For systems engineering, all specification exit processes.

Owner: Systems Engineering Process Owner.

User: Specification Author [Default User: SQC Team Leader].

X1: The specification author claims to have followed the specified

process description standard.

X2: The specification author claims to have followed all generic and

specific rules, which apply.

X3: Relevant SQC has been carried out and the quality level of each

output specification meets its stated SQC criteria. By default, the quality

level for any specification is that no more than 0.2 major defects/page4

may remain. (A page is 300 words of non-commentary text.)

Note, for some processes, there will be an explicit statement on SQC
criteria, which overrides this generic exit condition.

X4: As an additional optional measure, a cursory check of the speci-

fication by the author’s supervisor shows that there is reasonable

compliance with applicable rules. In practice, no major defects should

be found when a relevant sample (size and content) of the specifica-

tion is SQC checked for 15 minutes.

X5: Any process improvement suggestions identified have been sub-

mitted to the relevant process owners.

1.6 Principles: Generic Project

Principles are teachings, which you can use as guides to sensible action.

Here is a set of fundamental principles:

1. The Principle of ‘Controlling Risk’

There is lots of uncertainty and risk of deviation from plans in any

project.

You cannot eliminate risk. But, you can document it, plan and

design for it, accept it, measure it and reduce it to acceptable levels.

You may want to avoid risk, but it doesn’t want to avoid you.

2. The Principle of ‘Storage of Wisdom’

If your people are not all experienced or geniuses,

You need to store their hard-earned wisdom in your defined process.

4 A maximum of 0.2 remaining major defects/page is a very high standard. Beginners

should try for about 2.0 and work towards better levels.

Planguage Basics and Process Control 23

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Capture wisdom for reuse,

Fail to write it, that’s abuse!

3. The Principle of ‘Experienced Geniuses’

If you do have any experienced geniuses, don’t just let them save

projects;

They should share their wisdom with colleagues, on how to avoid

failures.

Those who learn the hard way,

Should share their easy way.

4. The Principle of ‘Grass Roots Experience’

Your grass roots people will know what is wrong with your work

standards,

So let them suggest improvements, every day.

The soldier who has the boot on knows where it pinches.

5. The Principle of ‘Short and Sweet’

Keep your standards short and sweet,

A single page will do the feat.

Brevity is the soul of wit,

All essentials, a page do fit.

6. The Principle of ‘Don’t Refuse to Reuse’

Reuse good specifications, and don’t repeat them,

Once said suffices, no repetitious vices.

Write once, use many.

7. The Principle of ‘High Standards’

Have high standards for your work process entry, to save yourself

grief,

Have high standards for your work process exit, to your friends’

great relief.

Note work standard conditions for success,

Respect them; even in duress.

8. The Principle of ‘Quality In, From the Beginning’

Quality needs to be designed into processes and products,

Cleaning up bad work is a loser, but cleaning early is better than late.

A stitch in time still saves nine,

But an ounce of prevention is still worth a pound of cure.

9. The Principle of ‘No Simpler’

The optimum guidance lies somewhere between anarchy,

And too much bureaucracy.

Things should be as simple as possible,

But no simpler.5

5 ‘‘Physics/theories/things should be as simple as possible, but no simpler’’. Reputed

quote of Albert Einstein. Nobody seems able to prove he actually said it, but it is

acknowledged to be in his spirit. Calaprice, Alice [Editor]. 2000. The Expanded
Quotable Einstein. Princeton University Press. ISBN 0-691-07021-0.

24 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

10. The Principle of ‘Intelligent Insubordination’

A work process ‘standard’ isn’t a law, just good advice,

Ignore it, if you’ve better ‘words from the wise’.

Rules were made to be broken wisely.

1.7 Additional Ideas

Continuous Process Improvement

Conventional ways of getting control over systems engineering projects

include:

. resource allocation adjustment (time, people, talent, money,

sponsorship)
. ambition level adjustment (performance to fit within budgets)
. shift of responsibility (outsourcing, purchasing, contracting,

democratization)
. priority management (sacrificing some things to get others, tradeoffs).

There is a less-understood addition to these ideas: process control. It is

to get control over results by getting control over the work processes
producing the results. In concept, this is Statistical Process Control

with its famous Plan-Do-Study-Act (PDSA) cycle as taught by She-

whart, Deming and Juran (Deming 1986).

‘Process control’ is sufficiently well known within manufacturing.

However, surprisingly, it has not become conventional practice within

systems engineering. There are two main areas where its use is lacking.

First, process control is rarely exploited in the area of project
management. This is in spite of there being ‘software’ literature,

which documents good experience with process control since the

Plan Study

Act

Do

Entry
Process

Exit
Process

Check that
defined

Entry Conditions
are met

Check that
defined

Exit Conditions
are met

Carry out
defined Procedure

Figure 1.7
A simplified PDSA process cycle diagram as a basis for work process control, consisting of
an entry process, a procedure and an exit process.

Planguage Basics and Process Control 25

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1970s: for example by Harlan Mills at IBM (Mills 1980), references

such as (Gilb 1988) and, even military IT standards within

the USA (such as MIL-STD-498 in 1994) (see Larman and Basili,

2003, for historical overview.) The problem is that this ‘software’

documentation is little known, having simply not been adequately

recognized in mainstream project management literature. (In fact,

there appears to be almost no reference at all to evolutionary project

delivery and process control. The Waterfall method unfortunately

dominates, according to my informal bookshop surveys and speak-

ing with professional project management people.)

Secondly, the PDSA cycle concept is also underutilized in systema-

tic process improvement. Use of numeric feedback for control is

often not understood and not practiced. This is, however, being

addressed in emerging standards for systems engineering and in US

DoD ‘Mandatory Guidelines’ (DoD Evolutionary Acquisition

1998).

The key concept is that if a well-defined process is followed, then

the process output performance levels will be a consistent and

predictable result of that process. If attempts are then made to

change the process, we can assume that systematically changed

performance results (hopefully, better levels and lower variability)

can safely be attributed to the process change, not chance. Unfor-

tunately this powerful concept is frequently ignored. The false

dogma is often spread that defined repeatable processes lead to

quality. (In fact, this is only the initial stage of achieving a stable

process, which is then ready for process change, as the prior

stability enables proof of the cause-and-effect of the change.)

It is important that work process standards be the vehicle for

continuous, systematic work process practice improvement (productivity
improvement). They must not remain static, when there is better

know-how. They must not stand in the way of improvement. They

must lead the way and teach the way. They must be easily changed
and frequently changed to incorporate better ideas quickly, and easily
adapted to suit changing circumstances or tailoring for local circum-

stances. The actual usage of work process standards must be mea-

sured, motivated and taught by using Specification Quality Control

(SQC) sampling. SQC measures specification conformance to

two classes of work process standards: official rules and exit/entry

conditions.

Normally no more than one significant deviation (one major defect/

page) from the specification rules should be allowed. Yet without

SQC, 100 or more major defects/page will be your fate. This may

seem astounding to people who have not measured it, but this, in my

experience, is the norm in most organizations throughout the world.

26 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Continuous work process improvement for a large organization can

involve making changes to company standards and practices at the rate

of 1,000 ideas implemented per year – as documented at IBM,

Research Triangle Park (Mays 1995) and IBM Rochester (Minnesota)

Laboratories (IBMSJ 1994). This process change rate seems to result

in annual productivity increases of about 40%, as recorded for exam-

ple at Raytheon Defense Electronics over several years (Dion 1993;

Haley et al. 1995; see also Section 1.8 below; over the years studied, a

total productivity increase of 270% was reported).

EXAMPLE Calculating the effect of detected defects, if uncorrected, on the timescales of a project

At a major U.S. multinational in October 1999, eight managers did a sample SQC
on an 82-page system requirement specification. The only rules used were, ‘clear,
unambiguous, no design specifications in the requirements.’ They found about 60
major defects/page.

Assumptions: My SQC experience has determined that:

. only about one third of the defects that are really there will be found by staff

inexperienced in using SQC at the first pass
. each defect will result in ‘an order of magnitude’ extra work to fix when found

downstream.

It is also assumed that there are 200 days per year and 8 hours per work-day (1600
hours/year).
Using these assumptions, it can be calculated that the project will incur 82 (number of

pages)� 60 (number of defects/page),� 3 (as only a third effective in finding
defects),� 10 (number of hours/defect) additional hours correcting defects¼ 147,600
hours or approximately 92 person years.

We can assume the probability of a major defect actually resulting in an average
10 hour delay is about 25%–35%. So at 25% we would lose 36,900 hours.
For a project with 10 programming staff, this meant roughly two years’ delay.

We later that afternoon were told that the project using this ‘approved’ specification
was actually at least one year late, probably 2 years late. This had in fact been
predicted fairly accurately by our analysis, before we were told the reality!
In such an environment, simply continuing to fix specification defects as they are detected

is not the sensible option. Continuous process improvement needs to be used to drive down
the number of defects being injected into the specifications.

See also Chapter 8 and the Glossary for further detail on Specification
Quality Control (SQC) and the Defect Prevention Process (DPP).

Why Process Control?

– Use of Best Practice
– Reuse of Ideas

– Predictable Output from
Stable Process

– Rapid Dissemination of Changes
– Ability to detect any ‘Bad’
Process Changes

– Process Measurement and
Benchmarks

Not just ‘having a Process’, but using it as ‘a vehicle for Change’.

Planguage Basics and Process Control 27

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.8 Further Example/Case Study: Continuous
Process Improvement at Raytheon

This Raytheon case study outlines how measurable process

improvement can be brought about using Specification Quality Con-

trol (SQC) and Continuous Process Improvement. Within Raytheon’s

Equipment Division, software process improvements have yielded:

. a 7.70 US dollars return on every dollar invested

. a greater than two-fold (2.7�) increase in productivity

. as measured by the Software Engineering Institute (SEI) Capability

Maturity Model (CMM), an evolution from Level 1 (Initial)

through Level 2 (Repeatable) to Level 3 (Defined) process maturity

(and later beyond that).

More detail can be found in Raymond Dion’s account of the software

process changes within Raytheon (Dion 1993; Haley et al. 1995).

Background

Raytheon, a diversified, international, technology-based company, is

one of the 100 largest corporations in the US. The Equipment

Division is one of eight divisions, and 11 major operating subsidiaries

within Raytheon, with annual sales that comprise about 13% of the

corporation’s $9.1 billion annual sales. In early 1988, many Software

Systems Laboratory (SSL) projects were delivered late and over bud-

get. That year, the SSL rated itself at CMM Level 1 (Initial), using the

SEI capability-assessment questionnaire.

Aim

As a result, in mid-1988, the Equipment Division started a process-

improvement initiative within the SSL. Within the initiative, four

working groups directed the major activities: Policy and Procedures,

Training, Tools and Methods, and Process Database (metrics). The

initiative’s fundamental aim was the continuous improvement of the

development and management process. Their strategy was to use a

three-phase cycle of stabilization, control and change in accordance

with the (PDSA) principles of W. Edwards Deming and Joseph Juran.

Financing the Improvements

Discretionary funding (overhead, independent research and develop-

ment, and reinvested profit) was the chosen solution. However, in

28 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

order to convince management to persevere, this approach required

two important ingredients. First, there had to be some short-term
benefit to ongoing projects and, second, there had to be a meaningful
quantification of what the benefit was.

Measuring the Effects

In launching the initiative, they had to consider how individual small

improvements, implemented more or less in parallel, would interact to

produce a net loss or gain. They decided it would be easier to measure

the overall effect of change on the ‘bottom line’.

Calculating Savings

Raytheon used Philip Crosby’s approach (Crosby 1996) to analyze a

database of 15 projects. The analysis, indicated that they had eliminated

about $15.8 million in rework costs through the end of 1992 (four and a

half years). (Hewlett Packard, using this author’s SQC methods,

reported similar results (Grady and Van Slack 1994)). The Raytheon

appraisal costs (a term meaning cost of auditing, testing, reviews and

inspections) had increased by 5%. The increased rigor with which they

conducted design and code inspections (SQC), accounts for some of this

increase, but most of the Raytheon result is due to a 30% decrease in

total project cost, which has pushed up appraisal cost proportionally.

Early delivery of one Raytheon project was reported to have given

them a $10 million bonus from their customer. It was considered

entirely due to the initiative. There were several other tangible benefits

from the initiative. The saving in rework costs was only one of them.

30

25

20

15

10

5

0
88 89 90 91 92 93 94 95

D
ef

ec
ts

 p
er

 T
ho

us
an

ds
of

 In
st

ru
ct

io
ns

Years

Figure 1.8
Another benefit from the effort: overall product quality, measured by software defect
density, improved by about 3 to 1, from 1988 to 1995 at Raytheon (Haley etal. 1995).

Planguage Basics and Process Control 29

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.9 Diagrams/Icons

Specific Project
Specification

Language

Specific
Product

Specifications

Specific Project
Work Process

Specific
Process

Language

Generic
Work

Process
Descriptions
(RS, DE, IE,
EVO & SQC)

and
Rules

Specific
Project Work

Process
Descriptions

(including
Rules)

User-
Defined
Terms,
User

Metrics
& User

Variables

Project
Input

Specifications

Generic
Process

Language

Specification Language
‘Planguage’
Generic
Version
including
Templates

I
Planguage

as
presented

in this book

II
Project
Specific
Version

III

Project
Process

Project

Planguage

Figure 1.9
I. At the top of the diagram, the two main, generic components of Planguage, the
specification language and the process descriptions are shown. (These two compo-
nents correspond to the version of Planguage presented in this book.)

II. In the middle of the diagram, the specific version of Planguage (the project specifica-
tion language and project process descriptions) selected for use by a project is shown.
This specific version will have been tailored by the project. In addition, a project will
have user-defined data. The user-defined data will always be unique to a project. It
comprises the user-defined terms, actual numeric values (user metrics) and any user-
assigned, non-numeric variables of the project specifications.

III. The bottom of the diagram is a generic model of a project process. It shows how the
various components of the project specific version of Planguage (and the product
data) map onto the project process.

30 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Some Basic Planguage Icons

Document or Specification

Process

Plan-Do-Study-Act Process Cycle

The four sides of the process icon symbolically represent the Shewhart

process-cycle definition of ‘Plan-Do-Study-Act’.

The process input/output axis is vertical and the process control axis is

horizontal.6 Specifications and other input materials are diagrammed as

entering from the north and exiting from the south. Previous processes

are connected from the west and subsequent processes are entered from

the east. These conventions are independent of the PDSA activities,

since one can enter and exit to and from any of these four process task

types. (That is, you can step on and off the cycle at any point.)

A rectangle

A rectangle with an upwards pointing
arrow on its left hand side.
The arrow reminds us of the cyclical nature of processes.

Do

Plan Study

Act

6 The traditional view as shown by Deming is a circle form with four arrows. I have

chosen the rectangle as it is easier to generate and has other nice properties. I hasten to

point out that Deming taught that it did not matter where in the cycle one entered a

PDSA process, nor where one exited, though he was not so concerned with exit, as he

viewed the cycle as an eternal process-control cycle, as long as there were competitive

pressures to improve things. I believe this is true and, so, I hope my choice of

representation does not inhibit the reader from entering and exiting processes wherever

convenient or realistic (P, D, S or A).

Planguage Basics and Process Control 31

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Notes Supporting the Example of a Corporate Policy
Standard

1. Quantify Critical Success Factors:
All critical success factors (function, performance and resource)
for any activity (planning, systems engineering and manage-
ment) shall be expressed clearly, unambiguously, measurably
and testably at all stages of consideration: presentation, evalua-
tion, construction and validation.

2. Evaluate Risk:
In any planning or systems engineering work we shall explicitly
document all notion of suspected or possible elements of risk or
uncertainty, so nobody reading it can be in the least doubt as to
the state of our certainty and knowledge.

3. Assess Change Impact – To Exercise Control over Multiple
Dimensions of Performance and Budget:
All design ideas (strategies, system components, processes or
other devices) shall be evaluated with regard to their effects on
all the critical objectives and budgets. Initially, this should be by
estimates, which are based on facts and experience. On deliv-
ery, the design ideas shall then be evaluated by actual measure-
ments taken as early and as frequently as possible.

Corporate Quality Policy

1. Quantify
Critical Success

Factors

4. Ensure
Change Control

2. Evaluate Risk

3. Assess
Change Impact

7. Evaluate
Specification

Quality

5. Perform
Evolutionary

Project Management

6. Ensure
Continuous

Work Process
Improvement

Quality
Policy

Figure 1.10
Example of a corporate policy standard.

32 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

4. Ensure Change Control – Configuration Management and
Traceability:
All statements of objectives, budgets, design ideas, and esti-
mates and measures of the impact of design ideas on objectives
and budgets shall be captured with explicit detailed information
as to their sources, so that detailed change control is made
effective and efficient.

5. Perform Evolutionary Project Management:
All projects whether concerning organizational issues or product
development, shall be controlled by a Plan-Do-Study-Act pro-
cess control cycle. They shall have small increments of cost and
time (in the 2% to 5% range normally) before attempting to
deliver useful customer increments of function and/or perfor-
mance improvement (at least some sort of field trial). Where
there is any choice of incremental step content we shall choose
the increment which gives the greatest quantified impacts in
total on all critical customer or project objectives, with least
resource expenditure.

6. Ensure Continuous Work Process Improvement:
Practical priority will be given to measurable continuous
improvement of all work processes in systems engineering, man-
agement and other company activities. Plans for type and
degree of improvement will be budgeted; and progress towards
improvement objectives will be measured. The ambition level will
be world-class levels and to be the leader in any area. As a
practical matter all employees are expected to participate in
analysis of current defects found by quality control (for example,
specification quality control (SQC) and test) and to spend effort
improving the current work environment to eliminate 50% of the
current defects every year over the next few years.

7. Evaluate Specification Quality:
All documents, capable of producing a significant impact on our
performance levels, must be evaluated using the best available
quality control process. These documents must meet an appro-
priately high quality standard (that is a low numeric value for the
‘maximum possible remaining major defects/page’ as specified
in our written standards and policies) before being released to
any internal or external customer for serious use. The ultimate
release level shall be state of the art (between 0.3 and 3.0
remaining major defects/page).

1.10 Summary: Planguage Basics and Process
Control

This chapter has provided an introduction to Planguage and, hope-

fully, set the rest of the book in context. The main Planguage concepts

Planguage Basics and Process Control 33

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

introduced in this chapter have been processes and continuous process
improvement through use of process standards. Many examples of

process standards will be found throughout this book. They aim to

provide practical, step-by-step advice on how to implement Plan-

guage.

Planguage is not a prescription of how I feel you should do things. It is

a framework for you to discover how you best can do things yourself.

Planguage is open for change from any source, at any time, for any

good reason. It is intended to be totally in tune with the need for

continuous improvement of all competitive systems and processes.

If Planguage doesn’t save time and effort and improve quality, it fails.

Don’t use it! Please do not misunderstand Planguage as if it is an

‘imposition of a lot of bureaucratic detail.’ I hate bureaucracy as much

as you do! But I hate failure even more. So, I am willing to use the

Planguage disciplines; I find that they pay off and make my profes-

sional life easier and more successful. (Note: The Planguage methods

actually work in most problem-solving situations; they can even be

used in your personal life too!)

Planguage is concerned with getting control over things. If you want to

be more in control of your work, Planguage has many practical

techniques to help you. It takes some learning. It takes some work to
implement. It takes time to change the culture around you.

In fact, human culture changes can be frustratingly slow; they can take

years! But if you don’t start this evolutionary process now, this week,

this project, then the problems will get worse, not better. Can you

afford to ignore the evidence from several major corporations, such as

Raytheon, that continuously improved best practice standards can

lead to substantial improvements in your team productivity annually

over the next few years?

34 Competitive Engineering

