

Team-based learning as a strategy to facilitate active learning

Dr Vesna Najdanovic Senior Lecturer in Chemical Engineering Engineering Department, Lancaster University v.najdanovic@lancaster.ac.uk

Webinar - Fakultet elektrotehnike i računarstva, Sveučilište u Zagrebu, February 2019.

Motivation

"What hear, I forget.

What I hear and see, remember a little.

What I hear, see and ask questions about or discuss with someone else, I begin to understand.

What I hear, see, discuss and do, I acquire knowledge. When I teach to another I master." Silberman, 1996.

How to foster active learning in a large class?

> 150 students

Team-based learning

Permanent teams

V. Najdanovic-Visak, "Team-based learning for first year engineering students", Education for Chemical Engineers 2017, 18, 26-34.

Number of publications per country

Number of publications per area

Research Area

Implementation at Lancaster University

- Process Engineering Fundamentals (first-year module, 8 credits).
- Compulsory for all engineering student (courses: chemical, nuclear, mechanical and electrical and electronics engineering)
- 2 x 1 hour lecture per week
 1 x 2 hours practical session per week
 (for ten weeks)
- 24 teams of 6-7 members.
- Three units: 1) process variables;
 - 2) mass balances;
 - 3) single and multiple phase systems.

Teams in TBL

- One instructor simultaneously facilitates many small teams in a large class.
- Teams need to be large (typically 5 8 members):
 - sufficient intellectual resources to solve problems.
- Teams are created by instructor:
 - balanced and diverse teams with wide range of skills.
- Teams are permanent.

Preparation

Readiness Assurance Process

Readiness Assurance Process

Aims: motivate students and guarantee their preparation

- iRAT and tRAT are the same, usually multiple choice questions.
- Main concepts are tested lower Bloom's levels of learning (knowledge, comprehension and application).
- During tRAT students come to consensus on their answers, which assures mutual transfer of knowledge.

Feedback – closing the loop

In-class application assignments

In-class application assignments

Students work in teams on progressively more difficult questions - **higher Bloom's levels of learning** (abilities to analyse, evaluate and create).

- Significant problem.
- Same problem.
- Specific choice.
- Simultaneous reporting.

Peer assessment

Team score is adjusted for each member of a team by peer evaluation:

- holds team members accountable to their teams.
- lessens the likelihood of social loafing.
- avoids potential "free-riders".
- enhances motivation and ability to work together effectively.

Conclusions

Source: National Training Laboratories, Bethel, Maine

Resources

- Team-Based Learning Collaborative (organization of educators from around the world who encourage and support the use of TBL in all levels of education) -http://www.teambasedlearning.org/
- European TBL Communityhttp://www.teambasedlearning.org/committees/european-tbl-community/
- Team-based Learning: A Transformative Use of Small Groups in College Teaching, Larry Michaelsen, Arletta Bauman-Knight, and Dee Fink (2003) Sterling, VA: Stylus Publishing