Computer-Aided Diagnosis of Breast Cancer: Towards the Detection of Early and Subtle Signs

Rangaraj M. Rangayyan J. E. Leo Desautels Fábio José Ayres

Department of Electrical and Computer Engineering, University of Calgary Alberta Cancer Board: Screen Test Calgary, Alberta, CANADA

Breast cancer statistics

- Lifetime probability of developing breast cancer is one in 8.8 (Canada)
- Lifetime probability of death due to breast cancer is one in 27 (Canada)
- Prevalence: 1% of all women living with the disease
- Screening mammography has been shown to reduce mortality rates by 30% to 70%

X-ray imaging of the breast -X-ray source (target) Filter Collimating diaphragm 11111 11 ¹¹ Breast compression paddle Compressed breast Focused grid -Screen-film cassette

Mammography

Signs of Breast Cancer:

- Masses
- Calcifications
- Bilateral asymmetry
- Architectural distortion (subtle, often missed)

Two standard views per breast: Cranio-caudal and Mediolateral oblique

- Breast cancer causes a desmoplastic reaction in breast tissue
- A mass is observed as a bright, hyper-dense object

Mammogram with a mass

Deposits of calcium in breast tissue

Mammogram with calcification

Bilateral Asymmetry

Differences in the overall appearance of one breast with reference to the other

Architectural Distortion

- Third most common mammographic sign of nonpalpable breast cancer
- The normal architecture of the breast is distorted
- No definite mass visible
- Spiculations radiating from a point
- Focal retraction or distortion at the edge of the parenchyma

Mammogram with architectural distortion Objectives of computer-aided processing of mammograms

- Enhancement of image quality
- Detection of subtle signs of cancer
- Quantitative analysis of features
- Objective aids to diagnostic decision
- Accurate and consistent analysis
- Earlier detection of breast cancer!

Some important problems

Detection of:

- Breast boundary (skin air boundary)
- Pectoral muscle (in MLO views)
- Fibro-glandular disc
- Calcifications
- Masses and tumors
- Curvilinear structures
- Bilateral asymmetry (asymmetric densities)
- Architectural distortion

Computer-aided diagnosis (CAD)

- Increased number of cancers detected¹ by 19.5%
- Increased early-stage malignancies detected¹ from 73% to 78%
- Recall rate increased¹ from 6.5% to 7.7%
- 50% of the cases of architectural distortion missed²

¹ (Freer and Ulissey, 2001) ² (Baker et al., 2003)

Simultaneous contrast

Simultaneous contrast

Just-noticeable difference

Contrast enhancement

Original mammogram with calcifications

Enhanced image using adaptive-neighborhood contrast enhancement

Examples of benign and malignant calcifications

Detection of calcifications by region growing

Detection of calcifications by error of prediction

(a) Part of original mammogram (b) Seeds detected using prediction error (c) Calcifications detected by region growing

Detection of masses by density slicing and texture flow-field analysis

Most benign masses have smooth shapes with convex lobules.

Detection and analysis of tumors

The green parts of the boundary represent concave segments, indicating malignancy.

Detection and analysis of tumors

Orientation field

Coherence

Tumor + *FP detected*

Detection of a subtle tumor

Radiological characterization of masses (BI-RADS)

Analysis of masses: feature extraction

Mass region

(a)

Shape analysis: Fractional concavity

Ribbon for computation of texture features

Normals to contour for computation of edge sharpness (acutance)

(d)

Objective representation of breast masses

benign	benign	malignant	malignant
circumscribed	macrolobulated	microlobulated	spiculated
(a) b145lc95	(b) b164ro94	(c) m51rc97	(d) m55lo97
F _{cc} = 0.00	$F_{cc} = 0.42$	$F_{cc} = 0.64$	F _{cc} = 0.83
A = 0.07	A = 0.08	A = 0.09	A = 0.01
F ₈ = 8.11	$F_8 = 8.05$	$F_8 = 8.15$	F ₈ = 8.29

Rank-ordering using shape: F_{cc}

Rank-ordering using acutance

m51rc97 0.088	b164ro94 0.085	b164rc94 0.085	b146ro96 0.084	b62lc97 0.084	b62lo97 0.080
				- CA	
b155ro95 0.080	m23lc97 0.079	b155rc95 0.078	m23lo97 0.074	m63ro97 0.073	b62lx97 0.072
	1				
b145lc95 0.071	b166lc94 0.069	b146rc96 0.068	b62rc97e 0.065	b62rc97d 0.064	m63rc97 0.064
	Y				
b62rc97a 0.063	b62rc97b 0.063	b164rx94 0.063	b62ro97e 0.063	b145lo95 0.062	b62ro97a 0.059
			2		62
b110rc95 0.059	b148ro97 0.058	b157lc96 0.057	b62ro97d 0.057	b157lo96 0.056	b110ro95 0.055
				and the	
b62ro97c 0.054	b62rc97c 0.053	b64rc97 0.052	b161lc95 0.051	m22lo97 0.051	m62lx97 0.051
	4				
b62rc97f 0.051	b148rc97 0.050	b166lo94 0.050	m59lc97 0.049	b158lc95 0.047	m22lc97 0.046
			5		\bigcirc
b62ro97b 0.045	m58rm97 0.044	b161lo95 0.043	m59lo97 0.041	m61lc97 0.040	b158lo95 0.039
b62ro97f 0.036	m51ro97 0.033	m64lc97 0.029	m62lo97 0.029	m55lc97 0.027	m61lo97 0.024
m58r097 U.U21	m58rc97 0.014	m551097 U.U12			

Classification of masses

	Logistic regression		Mahalanobis (pooled)		Linear discriminant analysis				KNN = 7			Recall		
Features	Sens	Spec	Avg	Sens	Spec	Avg	Sens	Spec	Avg	A _z	Sens	Spec	Avg	Avg
F _{cc}	90	97.3	94.7	90	97.3	94.7	100	97.3	98.2	0.99	90	97.3	94.7	90.4
A	50	94.6	78.9	75	67.6	70.0	75.0	73.0	73.7	0.73	45	91.7	73.7	63.6
F ₈	30	86.5	66.7	65	56.8	59.6	75.0	54.0	61.4	0.68	25	67.6	52.6	53.5
$F_{cc,}A$	90	97.3	94.7	90	97.3	94.7	100	97.3	98.2	0.98	90	100	96.5	84.6
F _{cc} , F ₈	90	97.3	94.7	90	97.3	94.7	100	97.3	98.2	0.99	90	97.3	94.7	85.6
A, F ₈	55	86.5	75.4	60	70.3	66.7	75.0	73.0	73.7	0.76	55	89.2	73.7	61.6
F_{cc}, A, F_8	90	97.3	94.7	95	97.3	96.5	100	97.3	98.2	0.99	90	97.3	94.7	83.4
14 texture	*	*	*	70	50.0	64.9	65.0	64.9	64.9	0.67	#	#	#	#

Content-based retrieval and analysis: benign mass

b145lc95

b62lx97

b164rx94

b148ro97

Content-based retrieval and analysis: malignant tumor

m55lo97

m58rc97

m61lo97

m55lc97

Detection of the pectoral muscle edge and the breast boundary using Gabor filters and active contour models

Analysis of bilateral asymmetry using Gabor filters

Architectural distortion

spiculated

focal retraction

incipient mass

Normal vs. architectural distortion

Normal vs. architectural distortion

Detection of architectural distortion

- 1. Extract the orientation field
- 2. Filter and downsample the orientation field
- 3. Analyze orientation field using phase portraits
- 4. Post-process the phase portrait maps
- 5. Detect sites of architectural distortion

$$g(x, y) = \frac{1}{2\pi\sigma_x \sigma_y} \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)\right] \cos(2\pi f x)$$

Design parameters

Gabor parameters

- line thickness τ
- elongation *l*
- orientation $\boldsymbol{\theta}$

$$f = \frac{1}{\tau}; \qquad \sigma_x = \frac{\tau}{2\sqrt{2\ln 2}}$$

$$\sigma_y = l\sigma_x; \qquad \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Design of Gabor filters

Extracting the orientation field

Compute the texture orientation (angle) for each pixel

Extracting the orientation field

Filtering and downsampling the orientation field

Orientation field: architectural distortion

Original image

Gabor magnitude

Filtered orientation field

Orientation field: normal case

Original image

Gabor magnitude

Filtered orientation field

$\vec{\mathbf{v}}(x, y) = \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \mathbf{A} \begin{pmatrix} x \\ y \end{pmatrix} + \mathbf{b}$ 1111node saddle spiral

Phase portraits

Phase portrait type	Eigenvalues of matrix A	Streamlines	Orientation field
Node	Real, same sign		
Saddle	Real, opposite sign		
Spiral	Complex conjugate		

Texture analysis using phase portraits (step 1 of 3)

 Fit phase portrait model to the moving analysis window

Texture analysis using phase portraits *(step 2 of 3)*

2. Find phase portrait type and location of fixed point

$$\mathbf{A} = \begin{bmatrix} 1.1 & 0.3 \\ -0.2 & 1.7 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} -4.8 \\ -7.9 \end{bmatrix}$$
Type: node
$$\mathsf{Fixed point:}$$

$$\mathbf{x} = 3, \ \mathbf{y} = 5$$

Texture analysis using phase portraits *(step 3 of 3)*

3. Cast a vote in the corresponding phase portrait map

Post-processing and detection

- 1. Filter the node map with a Gaussian mask
- Detect peaks in the node map larger than the other peaks within a radius of 6.4 mm (8 pixels)
- 3. The peaks indicate the locations of architectural distortion

Phase portrait maps: architectural distortion case

node [0, 1.1] saddle [0, 0.3x10⁻³] spiral [0, 0]

Phase portrait maps: normal case

node [0, 0.98] saddle [0, 0.2x10⁻⁴] spiral [0, 0]

Initial results of detection (2004)

 Test dataset: 19 mammograms with architectural distortion (MIAS database)

- Sensitivity: 84%
- 18 false positives per image

FROC analysis

55

Reduction of false positives

Rejection of confounding structures

- Confounding structures include
 - Edges of vessels
 - Intersections of vessels
 - Edge of the pectoral muscle
 - Edge of the fibro-glandular disk

Detection of curvilinear structures (CLS)

Nonmaximal suppression

If a pixel in the magnitude image is greater than its neighbors along the direction perpendicular to the local orientation field angle, the pixel is a core CLS pixel

CLS

Gabor magnitude output Core CLS pixel Neighboring pixels along normal

Nonmaximal suppression

ROI with a vessel

Gabor magnitude output

Output of nonmaximal suppression (NMS) Rejection of confounding structures

Main feature of confounding structures:

Angle from the orientation field and direction perpendicular to the gradient vector differ by less than 30 degrees

(Adaptation of a method by Karssemeijer and te Brake: IEEE TMI 1996)

Rejection of confounding CLS

Core CLS pixels detected (Output of NMS)

CLS pixels rejected from further analysis

Rejection of confounding CLS

Core CLS pixels detected (Output of NMS)

CLS pixels rejected from further analysis

Improved phase portrait analysis

- Local error measure weighted by smoothed and downsampled map of CLS pixels
- Simulated annealing (SA) applied to obtain initial estimate of phase portrait parameters at every position of analysis window
 - Global optimization of weighted sum of squared error measure over 6-D space of *A* and *b*
- Parameters further refined by nonlinear least squares

Improved detection of sites of architectural distortion

Node map without CLS analysis

Node map with CLS analysis

Result of detection of architectural distortion

FROC analysis (2005)

66

Effect of conditioning number of matrix *A* on the orientation field

Example	Matrix A	Eigenvalues	Angle between principal axes	Conditioning number	Orientation field
А	$\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$	$\lambda_1 = 1$ $\lambda_2 = 3$	90°	3	
В	$\begin{bmatrix} 1 & 7.46 \\ 0 & 3 \end{bmatrix}$	$\lambda_1 = 1$ $\lambda_2 = 3$	15°	21.85	
С	$\begin{bmatrix} 1 & 0 \\ 0 & 20 \end{bmatrix}$	$\lambda_1 = 1$ $\lambda_2 = 20$	90°	20	

Improved results (2006)

- 19 cases of architectural distortion
- 41 normal control mammograms (MIAS)
- Symmetric matrix **A**: node and saddle only
- Conditioning number of A > 3 : reject result
- Sensitivity: 84% at 4.5 false positives / image
- Sensitivity: 95% at 9.9 false positives / image

FROC analysis with symmetric A (2006)

Conclusion and future work

- Phase portraits can be used to detect architectural distortion
- Need to reduce false positives further
- Evaluate method with a large database
- Test method with screening mammograms taken prior to mass formation:

earlier detection of breast cancer

Applications of computer-aided diagnosis

- Screening program or diagnostic clinic:
 - Consultation by radiologists
 - Decision support
 - Second opinion
 - Comparison with cases of known diagnosis
- Training:
 - Teaching, continuing medical education
- Teleradiology, telemedicine:
 - When local expertise is not available

Use of the University of Calgary indexed atlas with mobile agents

Acknowledgment

- Natural Sciences and Engineering Research Council of Canada
- Alberta Heritage Foundation for Medical Research
- Canadian Breast Cancer Foundation
- Screen Test: Alberta Program for the Early Detection of Breast Cancer
- My research students, coworkers, and collaborators