
Ardbeg Vector Processor

Mladen Wilder

ARM Ltd

30 October 2008

Agenda

 About ARM

 Very brief history of ARM

 Ardbeg vector processor

 Wireless trends

 Ardbeg vector processor

 Ardbeg system programming tools

About ARM

ARM designs the technology that lies at the heart of advanced
digital products, from wireless, networking and consumer
entertainment solutions to imaging, automotive, security and
storage devices.

 ARM’s comprehensive product offering includes:

 32-bit RISC microprocessors

 graphics processors

 enabling software

 ASIC cell libraries and embedded memories

 high-speed connectivity products

 peripherals

 development tools.

History

 1985 – Acorn Computer Group developed the world's first commercial
RISC processor

 1987 – Acorn's ARM processor debuts as the first RISC processor for low-
cost PCs

 1990 – Advanced RISC Machines (ARM) spins out of Acorn and Apple
Computer's collaboration efforts with a charter to create a new
microprocessor standard. VLSI Technology becomes an investor and the
first licensee

 1998 – ARM Partners shipped more than 50 million ARM Powered
products

 2002 – ARM announced that it had shipped over one billion of its
microprocessor cores to date

 2008 – ARM announces 10 billionth processor shipment

Ardbeg Vector Processor

Motivation

Industry trends

 Ever increasing numbers of radio standards

 Cellular

 Connectivity

 Broadcast

 Multiple radios per handset driving up the BOM

 Wireless standards continuously evolve

 This includes both standard changes and new (improved) algorithms

 High data rate standards require high performance

 But mobile devices require low power

 Latest generation standards are typically implemented in
hardware to meet performance and power requirements

A new component

H/w
Datapath

Facility (Ease of use, Risk, Time to market, Cost)

P
o
w

e
r

&
P

e
rf

o
rm

a
n
c
e

‘ASIC-level performance with
software programmability’

 Combining performance and energy efficiency of hardware datapath with
software programmability

DSP & H/w
accelerators

Classic
DSP

Ardbeg

2.5G (E-GPRS)
200M Op’s/s

3G (WCDMA)
384Kb/s

4,000M Op’s/s

3.9G (LTE)
30,000M Op’s/s

GP CPU &
accelerator

PHY Modem
Workload

Performance figures are approximate and represent part of physical layer processing

Ardbeg research goals

To investigate programmable solutions for high-performance
and low-power signal processing applications.

 History

 2004 Funded research with UoM

 Defined SODA architecture

 2005 Ardbeg central ARM R&D research program est.

 Architecture and micro-architecture

 Parallelising compiler

 SOC compiler for system-level programming

 SOC debug and visualisation tools

Ardbeg Vector Processor

R&D prototype

Ardbeg System

Tools to provide a simple programmers view

 C development flow

Ardbeg Vector Processor

 Control Data Decoupled Architecture

 Control plane

 RISC control core

 DMA, Timers, I/O control …

 Debug

 Data plane – vector processor

 One or more Ardbeg data engines

 Hierarchical memory system

 Dedicated DMA controller

Ardbeg

512-bit Interconnect

L2 Memory systemL2 Memory system

DMA &
Bus

Bridge

DMA &
Bus

Bridge

Event
Trace

Event
Trace

RISC
Controller

RISC
Controller

TCMTCM

BIUBIU

64-bit Interconnect

DebugDebug ControlControl

AR1DPUAR1DPU

I TCMI TCM D TCMD TCM

BIUBIU

DebugDebug ControlControl

DatapathDatapath

I TCMI TCM D TCMD TCM

BIUBIU

IPCM,
Timers,
VIC, …

IPCM,
Timers,
VIC, …

Peripherals,
Accelerators

Peripherals,
Accelerators TurboTurbo ……

SoC-C Compiler and Development Tools

Ardbeg Data Engine
DE consists of:

 512-bit vector DPU

 VLIW architecture

 L1 memory system

 Instruction and data TCMs

 L2 memory system interfaces

 One 512-bit master port

 Two 512-bit slave ports

 AXI master port

 32-bit port for IO

 Control and debug ports

Optimised for energy efficiency

 Simple pipeline and control
logic

 Small L1 memory (32-64 kB)

 Clock and power gating

DPU

ITCM
DTCM 0

DTCM 1

Slave IF Master IF

Debug Control

Interconnect

Bank Bank Bank

AXI

Ardbeg DPU – logical diagram
Built using OptimoDE technology

512 bit wide SIMD

 64 x 8-bit concurrent operations

 32 x 16-bit concurrent operations

 16 x 32-bit concurrent operations

 Block floating point support

 SIMD permutation functional unit

 15 x 512 bit registers in SIMD
register file

 15 x 64 bit registers in SIMD
predicate register file

AGU cluster

 Address generation

 Loop control

Parallel execution

 Concurrent SIMD, scalar, AGU and
memory operations in one
instruction.

Fully compiler exposed -architecture

 Leads to efficient hardware
implementation

 Compiler scheduled operations
reduce hardware complexity

SoC C
system +

kernel
compiler

SoC C
system +

kernel
compiler

ARM CPU DE DMADE

An Ardbeg cluster

Programming the Ardbeg cluster

Two level application description

 System-level: describes inter-kernel
communications, timing constraints, mapping
attributes, assertions

Concurrent tasks extracted from “C +
channels + attributes” description

 Kernel-level: “C + primitives + vectors”

System compilation

 Generates tasks, schedules, communication
stubs, DMA requests, timing assertions,
synchronization, debug support

 Iterative compilation: marks up program with
increasingly detailed attributes; fully attributed
program required for final mapping

Kernel compilation (i.e. DE programming)

 Standard “C + primitives + vectors” converted
to machine code

K
e
rn

e
l-
le

ve
l

S
ys

te
m

-l
e
ve

l

Application description

DE (kernel) programming

 Ardbeg DE Instruction Set Architecture (ISA) is defined as a
set of C data types and primitives
 NEON™ based ISA

 SIMD, scalar and predicate data types used for data processing

 Integer data types used for control and memory access

 SIMD width and data type width are implementation defined

 Kernel development in C/C++ using the OptimoDE tools
 Compiler performs register allocation, instruction scheduling, etc.

 Micro-architecture is fully exposed to the compiler

 Programmer not exposed to Binary Instruction Format

 Leads to efficient hardware implementations

 Software development environment
 Optimising C compiler with profiling information

 ISS model

 Debugger

 Vector data types, shown for 128-bit wide vector

 8, 16 and 32-bit element support

 Predicate vector – 1, 2 or 4 bits per vector element

 Accumulator vector – support for 16-bit multiplies only

Vector data types

vint32_t elements0123

vint16_t elements01234567

vint8_t elements0123456789101112131415

bit number0127

vbool32_t elements0123

vbool16_t elements01234567

vbool8_t elements0123456789101112131415

bit number015

vint32L_t elements01234567

bit number0255

Architecture - primitives

 Ardbeg primitives (operations) can be broadly grouped into

 Arithmetic operations (unary, binary, conditional, fused)

 Logic operations

 Multiply operations

 Permute and data transfer operations

 There are a relatively small number of basic primitives

 Goal is energy efficiency and high-performance

 most commonly used operations

 Some primitives have several variations

 added functionality, such as block-float

 improved performance, such as pair-wise operations

Programming example - FIR

void fir_simd(

const vint16_t in[(SIZE+TAPS+ELEMENTS16-1)/ELEMENTS16],

vint16_t out[SIZE/ELEMENTS16],

const int16_t h[TAPS])

{

#pragma OUT out

vint16_t v;

vint16_t w = in[0];

int i,j;

vint32L_t acc;

for (i=0; i<SIZE/ELEMENTS16; ++i) {

v = w;

w = in[i+1];

acc = vqdmull_n_s16(v,h[0]);

v = vdown_n_s16(v,vget_lane_s16(w,0));

for (j=1; j<TAPS-1; ++j)

{

acc = vqdmlal_n_s16(acc,v,h[j]);

v = vdown_n_s16(v,vget_lane_s16(w,j));

}

out[i] = vqrdmlah_n_s16(acc,v,h[TAPS-1]);

}

}

Compiler output

pot | pc | operation | operation description

=======+=======+==============+===

| | fir_simd | FUNCTION

| | | BEGIN

0 | 0 | RT96 | addr$333:agu_regbank:7:d0

| | | <-

| | | | immediate:immediate=<#00000000000000000000000100000000>;

| | |

-------+-------+--------------+---

1 | 1 | RT93:0 | p0reg:p0reg

| | | <- addr$333:agu_regbank:7:dout6

| | | | dtcm_ram:WSelect=b64,

| | | dtcm_ram:CReq=active,

| | | dtcm_ram:Write=read;

| | |

1 | 1 | RT105 | addr$321:agu_regbank:4:d0

| | | <-

| | | | immediate:immediate=<#00000000000000000000000101000000>;

| | |

-------+-------+--------------+---

2 | 2 | RT104 | addr$332:agu_regbank:7:d0

| | | <-

| | | | immediate:immediate=<#00000000000000000000000000000000>;

| | |

2 | 2 | RT94:1 | p1reg:p1reg

| | | <- p0reg:p0reg

| | | | ;

There is no assembler, we have the schedule report instead

Program execution
 At the system level, the Ardbeg DE can be viewed as a simple programmable accelerator

 First, load the program code and data

 Then give the GO command

 On completion, an interrupt request is asserted

 However, programmability and the peripheral port allow the DE to interact with the rest of the
system
 It is possible to move the control and scheduling task to the Ardbeg DE

 SoC-C tools automate task scheduling and communication

void main() {

initFFT();

PIPELINE{

for(i=0; i<100; ++i) {

int buffer[N]@{M0,M1};

readData(buffer);

FIR(buffer)@P0;

FIFO(buffer);

FFT(buffer)@P1;

QAM(buffer)@P1;

SYNCH(buffer) @DMA3;

FIFO(buffer);

Viterbi(buffer)@P2;

}

}

}

SoC-C example

Sequential program semantics

 Well-understood programming model

 Good at expressing complex control patterns

 Straightforward port of legacy codes

 Simple debug model

Annotations

 Expose pipeline parallelism (PIPELINE,FIFO)

 Abstracts data copying (SYNCH)

 Express code/data placement (…@P0, …@{M0,M1})

 Do not alter semantics

 Can be checked for consistency

 Can be inferred or automatically inserted

SoC-C Event-Driven Execution

void main() {

initFFT();

PIPELINE{

for(i=0; i<100; ++i) {

int buffer[N]@{M0,M1};

readData(buffer);

FIR(buffer)@P0;

FIFO(buffer);

FFT(buffer)@P1;

QAM(buffer)@P1;

SYNCH(buffer) @ DMA3;

FIFO(buffer);

Viterbi(buffer)@P2;

}

}

}

FIR

FFT

QAM

SYNCH

ViterbiFFT

QAM

SYNCH

Viterbi

FIR

FIR

FFT

QAM

SYNCH

Viterbi

P0 P1 P2DMA3

Visualisation tools

 SoC-C run-time generates trace of time-stamped events

 Viewer visualizes trace using various activity views:

 Thread view: highlights sequence of execution

 Device view: highlights parallelism for load balancing

 Event view: correlation of system events

 Code view: link events to/from source code

More info

 SODA: A low-power architecture for software radio.

 Proc. 33rd Ann. Int. Symp. on Computer Architecture, Boston, MA USA, June 2006

 Top Pick—selected as one of the 12 best papers in computer architecture for 2006

 From Soda to Scotch: The Evolution of a Wireless Baseband Processor

 MICRO-41

 SoC-C: Efficient Programming Abstractions for Heterogeneous Multicore
Systems on Chip

 CASES-2008

Q&A

