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About ARM

ARM designs the technology that lies at the heart of advanced
digital products, from wireless, networking and consumer
entertainment solutions to imaging, automotive, security and
storage devices.

 ARM’s comprehensive product offering includes:

 32-bit RISC microprocessors

 graphics processors

 enabling software

 ASIC cell libraries and embedded memories

 high-speed connectivity products

 peripherals

 development tools.



History

 1985 – Acorn Computer Group developed the world's first commercial
RISC processor

 1987 – Acorn's ARM processor debuts as the first RISC processor for low-
cost PCs

 1990 – Advanced RISC Machines (ARM) spins out of Acorn and Apple
Computer's collaboration efforts with a charter to create a new
microprocessor standard. VLSI Technology becomes an investor and the
first licensee

 1998 – ARM Partners shipped more than 50 million ARM Powered
products

 2002 – ARM announced that it had shipped over one billion of its
microprocessor cores to date

 2008 – ARM announces 10 billionth processor shipment



Ardbeg Vector Processor

Motivation



Industry trends

 Ever increasing numbers of radio standards

 Cellular

 Connectivity

 Broadcast

 Multiple radios per handset driving up the BOM

 Wireless standards continuously evolve

 This includes both standard changes and new (improved) algorithms

 High data rate standards require high performance

 But mobile devices require low power

 Latest generation standards are typically implemented in
hardware to meet performance and power requirements



A new component
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Ardbeg research goals

To investigate programmable solutions for high-performance
and low-power signal processing applications.

 History

 2004 Funded research with UoM

 Defined SODA architecture

 2005 Ardbeg central ARM R&D research program est.

 Architecture and micro-architecture

 Parallelising compiler

 SOC compiler for system-level programming

 SOC debug and visualisation tools



Ardbeg Vector Processor

R&D prototype



Ardbeg System

Tools to provide a simple programmers view

 C development flow

Ardbeg Vector Processor

 Control Data Decoupled Architecture

 Control plane

 RISC control core

 DMA, Timers, I/O control …

 Debug

 Data plane – vector processor

 One or more Ardbeg data engines

 Hierarchical memory system

 Dedicated DMA controller

Ardbeg
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SoC-C Compiler and Development Tools



Ardbeg Data Engine
DE consists of:

 512-bit vector DPU

 VLIW architecture

 L1 memory system

 Instruction and data TCMs

 L2 memory system interfaces

 One 512-bit master port

 Two 512-bit slave ports

 AXI master port

 32-bit port for IO

 Control and debug ports

Optimised for energy efficiency

 Simple pipeline and control
logic

 Small L1 memory (32-64 kB)

 Clock and power gating
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Ardbeg DPU – logical diagram
Built using OptimoDE technology

512 bit wide SIMD

 64 x 8-bit concurrent operations

 32 x 16-bit concurrent operations

 16 x 32-bit concurrent operations

 Block floating point support

 SIMD permutation functional unit

 15 x 512 bit registers in SIMD
register file

 15 x 64 bit registers in SIMD
predicate register file

AGU cluster

 Address generation

 Loop control

Parallel execution

 Concurrent SIMD, scalar, AGU and
memory operations in one
instruction.

Fully compiler exposed -architecture

 Leads to efficient hardware
implementation

 Compiler scheduled operations
reduce hardware complexity
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An Ardbeg cluster

Programming the Ardbeg cluster

Two level application description

 System-level: describes inter-kernel
communications, timing constraints, mapping
attributes, assertions

Concurrent tasks extracted from “C +
channels + attributes” description

 Kernel-level: “C + primitives + vectors”

System compilation

 Generates tasks, schedules, communication
stubs, DMA requests, timing assertions,
synchronization, debug support

 Iterative compilation: marks up program with
increasingly detailed attributes; fully attributed
program required for final mapping

Kernel compilation (i.e. DE programming)

 Standard “C + primitives + vectors” converted
to machine code
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DE (kernel) programming

 Ardbeg DE Instruction Set Architecture (ISA) is defined as a
set of C data types and primitives
 NEON™ based ISA

 SIMD, scalar and predicate data types used for data processing

 Integer data types used for control and memory access

 SIMD width and data type width are implementation defined

 Kernel development in C/C++ using the OptimoDE tools
 Compiler performs register allocation, instruction scheduling, etc.

 Micro-architecture is fully exposed to the compiler

 Programmer not exposed to Binary Instruction Format

 Leads to efficient hardware implementations

 Software development environment
 Optimising C compiler with profiling information

 ISS model

 Debugger



 Vector data types, shown for 128-bit wide vector

 8, 16 and 32-bit element support

 Predicate vector – 1, 2 or 4 bits per vector element

 Accumulator vector – support for 16-bit multiplies only

Vector data types

vint32_t elements0123

vint16_t elements01234567

vint8_t elements0123456789101112131415

bit number0127

vbool32_t elements0123

vbool16_t elements01234567

vbool8_t elements0123456789101112131415

bit number015

vint32L_t elements01234567

bit number0255



Architecture - primitives

 Ardbeg primitives (operations) can be broadly grouped into

 Arithmetic operations (unary, binary, conditional, fused)

 Logic operations

 Multiply operations

 Permute and data transfer operations

 There are a relatively small number of basic primitives

 Goal is energy efficiency and high-performance

 most commonly used operations

 Some primitives have several variations

 added functionality, such as block-float

 improved performance, such as pair-wise operations



Programming example - FIR

void fir_simd(

const vint16_t in[(SIZE+TAPS+ELEMENTS16-1)/ELEMENTS16],

vint16_t out[SIZE/ELEMENTS16],

const int16_t h[TAPS])

{

#pragma OUT out

vint16_t v;

vint16_t w = in[0];

int i,j;

vint32L_t acc;

for (i=0; i<SIZE/ELEMENTS16; ++i) {

v = w;

w = in[i+1];

acc = vqdmull_n_s16(v,h[0]);

v = vdown_n_s16(v,vget_lane_s16(w,0));

for (j=1; j<TAPS-1; ++j)

{

acc = vqdmlal_n_s16(acc,v,h[j]);

v = vdown_n_s16(v,vget_lane_s16(w,j));

}

out[i] = vqrdmlah_n_s16(acc,v,h[TAPS-1]);

}

}



Compiler output

pot | pc | operation | operation description

=======+=======+==============+=================================================

| | fir_simd | FUNCTION

| | | BEGIN

0 | 0 | RT96 | addr$333:agu_regbank:7:d0

| | | <-

| | | | immediate:immediate=<#00000000000000000000000100000000>;

| | |

-------+-------+--------------+-------------------------------------------------

1 | 1 | RT93:0 | p0reg:p0reg

| | | <- addr$333:agu_regbank:7:dout6

| | | | dtcm_ram:WSelect=b64,

| | | dtcm_ram:CReq=active,

| | | dtcm_ram:Write=read;

| | |

1 | 1 | RT105 | addr$321:agu_regbank:4:d0

| | | <-

| | | | immediate:immediate=<#00000000000000000000000101000000>;

| | |

-------+-------+--------------+-------------------------------------------------

2 | 2 | RT104 | addr$332:agu_regbank:7:d0

| | | <-

| | | | immediate:immediate=<#00000000000000000000000000000000>;

| | |

2 | 2 | RT94:1 | p1reg:p1reg

| | | <- p0reg:p0reg

| | | | ;

There is no assembler, we have the schedule report instead



Program execution
 At the system level, the Ardbeg DE can be viewed as a simple programmable accelerator

 First, load the program code and data

 Then give the GO command

 On completion, an interrupt request is asserted

 However, programmability and the peripheral port allow the DE to interact with the rest of the
system
 It is possible to move the control and scheduling task to the Ardbeg DE

 SoC-C tools automate task scheduling and communication



void main() {

initFFT();

PIPELINE{

for(i=0; i<100; ++i) {

int buffer[N]@{M0,M1};

readData(buffer);

FIR(buffer)@P0;

FIFO(buffer);

FFT(buffer)@P1;

QAM(buffer)@P1;

SYNCH(buffer) @DMA3;

FIFO(buffer);

Viterbi(buffer)@P2;

}

}

}

SoC-C example

Sequential program semantics

 Well-understood programming model

 Good at expressing complex control patterns

 Straightforward port of legacy codes

 Simple debug model

Annotations

 Expose pipeline parallelism (PIPELINE,FIFO)

 Abstracts data copying (SYNCH)

 Express code/data placement (…@P0, …@{M0,M1})

 Do not alter semantics

 Can be checked for consistency

 Can be inferred or automatically inserted



SoC-C Event-Driven Execution

void main() {

initFFT();

PIPELINE{

for(i=0; i<100; ++i) {

int buffer[N]@{M0,M1};

readData(buffer);

FIR(buffer)@P0;

FIFO(buffer);

FFT(buffer)@P1;

QAM(buffer)@P1;

SYNCH(buffer) @ DMA3;

FIFO(buffer);

Viterbi(buffer)@P2;

}

}

}

FIR

FFT

QAM

SYNCH

ViterbiFFT

QAM

SYNCH

Viterbi

FIR

FIR
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QAM

SYNCH

Viterbi
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Visualisation tools

 SoC-C run-time generates trace of time-stamped events

 Viewer visualizes trace using various activity views:

 Thread view: highlights sequence of execution

 Device view: highlights parallelism for load balancing

 Event view: correlation of system events

 Code view: link events to/from source code



More info

 SODA: A low-power architecture for software radio.

 Proc. 33rd Ann. Int. Symp. on Computer Architecture, Boston, MA USA, June 2006

 Top Pick—selected as one of the 12 best papers in computer architecture for 2006

 From Soda to Scotch: The Evolution of a Wireless Baseband Processor

 MICRO-41

 SoC-C: Efficient Programming Abstractions for Heterogeneous Multicore
Systems on Chip

 CASES-2008
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