
Ardbeg Vector Processor

Mladen Wilder

ARM Ltd

30 October 2008

Agenda

 About ARM

 Very brief history of ARM

 Ardbeg vector processor

 Wireless trends

 Ardbeg vector processor

 Ardbeg system programming tools

About ARM

ARM designs the technology that lies at the heart of advanced
digital products, from wireless, networking and consumer
entertainment solutions to imaging, automotive, security and
storage devices.

 ARM’s comprehensive product offering includes:

 32-bit RISC microprocessors

 graphics processors

 enabling software

 ASIC cell libraries and embedded memories

 high-speed connectivity products

 peripherals

 development tools.

History

 1985 – Acorn Computer Group developed the world's first commercial
RISC processor

 1987 – Acorn's ARM processor debuts as the first RISC processor for low-
cost PCs

 1990 – Advanced RISC Machines (ARM) spins out of Acorn and Apple
Computer's collaboration efforts with a charter to create a new
microprocessor standard. VLSI Technology becomes an investor and the
first licensee

 1998 – ARM Partners shipped more than 50 million ARM Powered
products

 2002 – ARM announced that it had shipped over one billion of its
microprocessor cores to date

 2008 – ARM announces 10 billionth processor shipment

Ardbeg Vector Processor

Motivation

Industry trends

 Ever increasing numbers of radio standards

 Cellular

 Connectivity

 Broadcast

 Multiple radios per handset driving up the BOM

 Wireless standards continuously evolve

 This includes both standard changes and new (improved) algorithms

 High data rate standards require high performance

 But mobile devices require low power

 Latest generation standards are typically implemented in
hardware to meet performance and power requirements

A new component

H/w
Datapath

Facility (Ease of use, Risk, Time to market, Cost)

P
o
w

e
r

&
P

e
rf

o
rm

a
n
c
e

‘ASIC-level performance with
software programmability’

 Combining performance and energy efficiency of hardware datapath with
software programmability

DSP & H/w
accelerators

Classic
DSP

Ardbeg

2.5G (E-GPRS)
200M Op’s/s

3G (WCDMA)
384Kb/s

4,000M Op’s/s

3.9G (LTE)
30,000M Op’s/s

GP CPU &
accelerator

PHY Modem
Workload

Performance figures are approximate and represent part of physical layer processing

Ardbeg research goals

To investigate programmable solutions for high-performance
and low-power signal processing applications.

 History

 2004 Funded research with UoM

 Defined SODA architecture

 2005 Ardbeg central ARM R&D research program est.

 Architecture and micro-architecture

 Parallelising compiler

 SOC compiler for system-level programming

 SOC debug and visualisation tools

Ardbeg Vector Processor

R&D prototype

Ardbeg System

Tools to provide a simple programmers view

 C development flow

Ardbeg Vector Processor

 Control Data Decoupled Architecture

 Control plane

 RISC control core

 DMA, Timers, I/O control …

 Debug

 Data plane – vector processor

 One or more Ardbeg data engines

 Hierarchical memory system

 Dedicated DMA controller

Ardbeg

512-bit Interconnect

L2 Memory systemL2 Memory system

DMA &
Bus

Bridge

DMA &
Bus

Bridge

Event
Trace

Event
Trace

RISC
Controller

RISC
Controller

TCMTCM

BIUBIU

64-bit Interconnect

DebugDebug ControlControl

AR1DPUAR1DPU

I TCMI TCM D TCMD TCM

BIUBIU

DebugDebug ControlControl

DatapathDatapath

I TCMI TCM D TCMD TCM

BIUBIU

IPCM,
Timers,
VIC, …

IPCM,
Timers,
VIC, …

Peripherals,
Accelerators

Peripherals,
Accelerators TurboTurbo ……

SoC-C Compiler and Development Tools

Ardbeg Data Engine
DE consists of:

 512-bit vector DPU

 VLIW architecture

 L1 memory system

 Instruction and data TCMs

 L2 memory system interfaces

 One 512-bit master port

 Two 512-bit slave ports

 AXI master port

 32-bit port for IO

 Control and debug ports

Optimised for energy efficiency

 Simple pipeline and control
logic

 Small L1 memory (32-64 kB)

 Clock and power gating

DPU

ITCM
DTCM 0

DTCM 1

Slave IF Master IF

Debug Control

Interconnect

Bank Bank Bank

AXI

Ardbeg DPU – logical diagram
Built using OptimoDE technology

512 bit wide SIMD

 64 x 8-bit concurrent operations

 32 x 16-bit concurrent operations

 16 x 32-bit concurrent operations

 Block floating point support

 SIMD permutation functional unit

 15 x 512 bit registers in SIMD
register file

 15 x 64 bit registers in SIMD
predicate register file

AGU cluster

 Address generation

 Loop control

Parallel execution

 Concurrent SIMD, scalar, AGU and
memory operations in one
instruction.

Fully compiler exposed -architecture

 Leads to efficient hardware
implementation

 Compiler scheduled operations
reduce hardware complexity

SoC C
system +

kernel
compiler

SoC C
system +

kernel
compiler

ARM CPU DE DMADE

An Ardbeg cluster

Programming the Ardbeg cluster

Two level application description

 System-level: describes inter-kernel
communications, timing constraints, mapping
attributes, assertions

Concurrent tasks extracted from “C +
channels + attributes” description

 Kernel-level: “C + primitives + vectors”

System compilation

 Generates tasks, schedules, communication
stubs, DMA requests, timing assertions,
synchronization, debug support

 Iterative compilation: marks up program with
increasingly detailed attributes; fully attributed
program required for final mapping

Kernel compilation (i.e. DE programming)

 Standard “C + primitives + vectors” converted
to machine code

K
e
rn

e
l-
le

ve
l

S
ys

te
m

-l
e
ve

l

Application description

DE (kernel) programming

 Ardbeg DE Instruction Set Architecture (ISA) is defined as a
set of C data types and primitives
 NEON™ based ISA

 SIMD, scalar and predicate data types used for data processing

 Integer data types used for control and memory access

 SIMD width and data type width are implementation defined

 Kernel development in C/C++ using the OptimoDE tools
 Compiler performs register allocation, instruction scheduling, etc.

 Micro-architecture is fully exposed to the compiler

 Programmer not exposed to Binary Instruction Format

 Leads to efficient hardware implementations

 Software development environment
 Optimising C compiler with profiling information

 ISS model

 Debugger

 Vector data types, shown for 128-bit wide vector

 8, 16 and 32-bit element support

 Predicate vector – 1, 2 or 4 bits per vector element

 Accumulator vector – support for 16-bit multiplies only

Vector data types

vint32_t elements0123

vint16_t elements01234567

vint8_t elements0123456789101112131415

bit number0127

vbool32_t elements0123

vbool16_t elements01234567

vbool8_t elements0123456789101112131415

bit number015

vint32L_t elements01234567

bit number0255

Architecture - primitives

 Ardbeg primitives (operations) can be broadly grouped into

 Arithmetic operations (unary, binary, conditional, fused)

 Logic operations

 Multiply operations

 Permute and data transfer operations

 There are a relatively small number of basic primitives

 Goal is energy efficiency and high-performance

 most commonly used operations

 Some primitives have several variations

 added functionality, such as block-float

 improved performance, such as pair-wise operations

Programming example - FIR

void fir_simd(

const vint16_t in[(SIZE+TAPS+ELEMENTS16-1)/ELEMENTS16],

vint16_t out[SIZE/ELEMENTS16],

const int16_t h[TAPS])

{

#pragma OUT out

vint16_t v;

vint16_t w = in[0];

int i,j;

vint32L_t acc;

for (i=0; i<SIZE/ELEMENTS16; ++i) {

v = w;

w = in[i+1];

acc = vqdmull_n_s16(v,h[0]);

v = vdown_n_s16(v,vget_lane_s16(w,0));

for (j=1; j<TAPS-1; ++j)

{

acc = vqdmlal_n_s16(acc,v,h[j]);

v = vdown_n_s16(v,vget_lane_s16(w,j));

}

out[i] = vqrdmlah_n_s16(acc,v,h[TAPS-1]);

}

}

Compiler output

pot | pc | operation | operation description

=======+=======+==============+===

| | fir_simd | FUNCTION

| | | BEGIN

0 | 0 | RT96 | addr$333:agu_regbank:7:d0

| | | <-

| | | | immediate:immediate=<#00000000000000000000000100000000>;

| | |

-------+-------+--------------+---

1 | 1 | RT93:0 | p0reg:p0reg

| | | <- addr$333:agu_regbank:7:dout6

| | | | dtcm_ram:WSelect=b64,

| | | dtcm_ram:CReq=active,

| | | dtcm_ram:Write=read;

| | |

1 | 1 | RT105 | addr$321:agu_regbank:4:d0

| | | <-

| | | | immediate:immediate=<#00000000000000000000000101000000>;

| | |

-------+-------+--------------+---

2 | 2 | RT104 | addr$332:agu_regbank:7:d0

| | | <-

| | | | immediate:immediate=<#00000000000000000000000000000000>;

| | |

2 | 2 | RT94:1 | p1reg:p1reg

| | | <- p0reg:p0reg

| | | | ;

There is no assembler, we have the schedule report instead

Program execution
 At the system level, the Ardbeg DE can be viewed as a simple programmable accelerator

 First, load the program code and data

 Then give the GO command

 On completion, an interrupt request is asserted

 However, programmability and the peripheral port allow the DE to interact with the rest of the
system
 It is possible to move the control and scheduling task to the Ardbeg DE

 SoC-C tools automate task scheduling and communication

void main() {

initFFT();

PIPELINE{

for(i=0; i<100; ++i) {

int buffer[N]@{M0,M1};

readData(buffer);

FIR(buffer)@P0;

FIFO(buffer);

FFT(buffer)@P1;

QAM(buffer)@P1;

SYNCH(buffer) @DMA3;

FIFO(buffer);

Viterbi(buffer)@P2;

}

}

}

SoC-C example

Sequential program semantics

 Well-understood programming model

 Good at expressing complex control patterns

 Straightforward port of legacy codes

 Simple debug model

Annotations

 Expose pipeline parallelism (PIPELINE,FIFO)

 Abstracts data copying (SYNCH)

 Express code/data placement (…@P0, …@{M0,M1})

 Do not alter semantics

 Can be checked for consistency

 Can be inferred or automatically inserted

SoC-C Event-Driven Execution

void main() {

initFFT();

PIPELINE{

for(i=0; i<100; ++i) {

int buffer[N]@{M0,M1};

readData(buffer);

FIR(buffer)@P0;

FIFO(buffer);

FFT(buffer)@P1;

QAM(buffer)@P1;

SYNCH(buffer) @ DMA3;

FIFO(buffer);

Viterbi(buffer)@P2;

}

}

}

FIR

FFT

QAM

SYNCH

ViterbiFFT

QAM

SYNCH

Viterbi

FIR

FIR

FFT

QAM

SYNCH

Viterbi

P0 P1 P2DMA3

Visualisation tools

 SoC-C run-time generates trace of time-stamped events

 Viewer visualizes trace using various activity views:

 Thread view: highlights sequence of execution

 Device view: highlights parallelism for load balancing

 Event view: correlation of system events

 Code view: link events to/from source code

More info

 SODA: A low-power architecture for software radio.

 Proc. 33rd Ann. Int. Symp. on Computer Architecture, Boston, MA USA, June 2006

 Top Pick—selected as one of the 12 best papers in computer architecture for 2006

 From Soda to Scotch: The Evolution of a Wireless Baseband Processor

 MICRO-41

 SoC-C: Efficient Programming Abstractions for Heterogeneous Multicore
Systems on Chip

 CASES-2008

Q&A

