

Lightning location system in Croatia

Dr. sc. Boško Milešević Bojan Franc, dipl. ing.

Prof. dr. sc. Ivo Uglešić Izv. prof. dr. sc. Viktor Milardić Dr. sc. Božidar Filipović-Grčić Nina Stipetić, mag. ing.

December 2017

Presentation outline

- Lightning simplified physical model
- Lightning location system LINET
- LLS measured lightning data
- Lightning statistics for Croatian TSO
- Protection of overhead lines from lightning
- Conclusion

Lightning – simplified physical model

Electrical charge in the clouds

Lightning – simplified physical model

Typical lider progression and multiple lightning flashes

Lightning – downward stroke

Downward stroke to the ground

First stroke

Multiple stroke

Lightning – downward stroke

Upward stroke to the towers

Lightning location system LINET – sensor positions

Lightning detection

Lightning stroke (offshore Dubrovnik)

Lightning sensor measures magnetic flux in time in frequency range (1 kHz – 200 kHz)

VLF/LF frequency range for detection of lightning strokes

TOA (Time-Of-Arrival) method for locating lightning

LINET 3D algorithm for determination of lightning altitude

Data flow: Sensors -> LINET center -> Users

Isokeraunic map of Croatia

Thunderstorm movement monitoring

12.9.2017. 00h – 24h

* 1h frames

347 533 lightning strokes detected

LLS measured lightning data

9 years of lightning data Number of lightning strokes

LLS measured lightning data

Cumulative amplitude distribution

- Negative polarity
- Cloud to ground strokes
- **2009 2016**
- Optimization of Lightning detection algorithm at the end of 2015
 - Better detection of small current lightning in 2016

Measured Lightning Data

Cumulative frequency of lightning occurrence

- IEEE distribution
- LLS measurements

Zagreb Energy Congress 2017

Lightning Correlator

Lightning activity close to 220 kV line Konjsko - Orlovac

4.5.2009. 15:20h - 17:20h

* 10 min interval

LLS spatial correlation

GIS data on transmission network
Spatial correlation with lightning data

Lightning statistics for Croatian TSO

- Transmission network
 - □ 339 lines 110/220/400 kV AC
 - 🗅 8 457 km

		400 kV	220 kV	110 kV	Total
2016	No. of transmission lines	15	27	297	339
	Transmission lines length [km]	1 676.225	1 468.082	5 313.616	8 457.923
	Alarm zone surfaces [km ²]	3 391.696	3 014.185	11 424.409	17 830.290
	No. of strokes	91 908	84 993	290 267	467 168
	No. strokes / 100 km of transmission line	5 483	5 789	5 463	5 523
	Stroke density [stroke / km²year]	27.10	28.20	25.41	26.20

Lightning statistics for Croatian TSO

- □ SCADA registered CB (circuit breaker) operations
- CB operations due to lightning
- CB operations due to close strokes (near short circuit)

		400 kV	220 kV	110 kV	Total
2016	No. of line bays	33	53	483	569
	Total No. of CB operations	390	1 407	10 121	11 918
	No. of operations / No. of line bays	20.9	26.5	11.8	20.946
	No. of correlated CB operations	3	21	238	262
	No. of correlations / 100 km line length	0.179	1.430	4.479	3.098
	No. of operations CB due to close	1	2	54	57
	strokes				

Isokeraunic level of Croatia

Lightning statistics for Croatian TSO

- CB operations due to lightning per voltage level
- CB operations due to lightning per transmission region

		Voltage level	Number of correlated CB operations
	Number of	400 kV	3
Transmission region	correlated CB	220 kV	21
	operations	110 kV	238
Split	146	Total	262
Rijeka	Rijeka 98		
Osijek	12		
Zagreb	6		
Total	262		

LSAs operation on OHL 110 kV Ston - Komolac

□ Line lenght: 44 km

- 110 LSAs (Line Surge Arresters) zinc oxide surge arrester installed in July 2007
- Configuration obtained by computer simulations
 - Overhead line parameters, grounding tower resistance
 - Results not applied completely
 - Modified twice during the first six years of operation
 - □ 6 LSAs dismantled due to mechanical damages
 - □ 50 towers with 1 LSA, 24 towers with 2 LSAs and 2 towers with 3 LSAs

110 kV transmission network of the island of Brač

Line Surge Arrsters installation

- OHL 1 110 kV OHL Nerežišća Stari Grad
- Line section lenght: 8.228 km
- 25 LSAs installed
- 3 towers with 1 LSA, 8 towers with 2 LSAs, 2 towers with 3 LSAs
- □ OHL 2 110 kV OHL Dugi Rat Nerežišća 2
- Line section lenght: 5.929 km
- 20 LSAs installed
- 15 towers with 1 LSA, 1 tower with 2 LSAs, 1 tower with 3 LSAs
- □ LSAs zinc oxide surge aresster:

 $U_c = 78 \text{ kV}, U_r = 108 \text{ kVeff}$, IEC Class: II, Nominal discharge current: 10 kA, Discharge current withstand strength (4/10 μ s): 100 kApeak

Tower data

One-circuit		
Steel-frame		
240/40 - Al/Steel		
ACS – OPGW		
0.118		
0.414		
0.349		
1.108		

Tower data

Future projects for LSAs implementation

Conclusion

- Lightning location system in Croatia benefits for all technical systems
- Time and spatial correlation of the relay protection system data and LLS data
- Number of outages of OHLs in relation to the lightning activities decreased
- Possible improvements and further analyses needed
- Future application to OHLs in the Southern part of Croatian transmission network

Lightning location system in Croatia

Dr. sc. Boško Milešević Bojan Franc, dipl. ing.

Prof. dr. sc. Ivo Uglešić Izv. prof. dr. sc. Viktor Milardić Dr. sc. Božidar Filipović-Grčić Nina Stipetić, mag. ing.

December 2017