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Taken from Andre Martins’ talk



GPT-3

Intro
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OP-ED fully written by GPT-3, The Guardian
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3

https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3


GitHub Copilot

Intro
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Sample from GitHub Copilot promo release
https://github.com/features/copilot 

https://github.com/features/copilot
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OpenAI DALL-E 2 outpainting sample; original painting by Johannes Vermeer; Outpainting by August Kamp
https://openai.com/blog/dall-e-introducing-outpainting/ 

https://openai.com/blog/dall-e-introducing-outpainting/
https://docs.google.com/file/d/1zHwGenhAblc7WRJUjeO5OX7ybdKV4aqv/preview
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Sample from the Facebook Make-A-Video release: 
https://ai.facebook.com/blog/generative-ai-text-to-video/

https://ai.facebook.com/blog/generative-ai-text-to-video/


ChatGPT

Intro
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Sample obtained from correspondence with ChatGPT
https://chat.openai.com/chat

https://chat.openai.com/chat
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Time to retire?



Transformer
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● “Attention is all you need” [Vaswani et al, 2017]

● Pros
○ Highly parallel architecture
○ Scales to large depths

■ Layernorm, residual connections
○ “Open vocabulary”

■ Byte pair encodings

● Cons
○ Issues scaling to large input lengths

■ O(n2) attention complexity
○ Requires positional embeddings

Essentially, a large neural network

Transformer
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The Transformer

Image from Vaswani et al, 2017

https://arxiv.org/abs/1706.03762


Transformer
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Training the Transformer (1)

Image from “Illustrated BERT” by Jay Allamar: https://jalammar.github.io/illustrated-bert/

https://jalammar.github.io/illustrated-bert/


Transformer
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Training the Transformer (2)

Image from Deepmind, Wavenet illustration: 
https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio

https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio
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Training the Transformer

1000000000000000000
0000000000000000000
00000000000000000…

×

1. Masked language modeling [BERT; Devlin et al, 2018]
○ Apply a noise function to input [Lewis et al, 2019]

■ Mask k% tokens; infill text; permute
sentence; rotate document;...

○ Network has to reconstruct original input

2. (Autoregressive) language modeling [Radford et al, 2018]
○ Given previous tokens, predict most likely next token in sequence

■ Teacher forcing
○ Less efficient (wrt. MLM)
○ More suited for text generation
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Training the Transformer

1000000000000000000
0000000000000000000
00000000000000000…

×

1. Masked language modeling [BERT; Devlin et al, 2018]
○ Apply a noise function to input [Lewis et al, 2019]

■ Mask k% tokens; infill text; permute
sentence; rotate document;...

○ Network has to reconstruct original input

2. (Autoregressive) language modeling [Radford et al, 2018]
○ Given previous tokens, predict most likely next token in sequence

■ Teacher forcing
○ Less efficient (wrt. MLM)
○ More suited for text generation
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Training a Transformer: GPT-3

?



1. Choose a (pre)training task
○ Language modeling or masked language modeling

2. Gather a (large enough) dataset
○ GPT-3 is trained on about 499 billion tokens ≈ 45TB of text data ≈ one olympic 

swimming pool filled with soft cover Harry Potter and the Prisoner of Azkaban books
3. Train the model

○ Using a single NVIDIA Tesla V100 GPU, it would take 355 years to train GPT-3
○ Using 1024 A100 GPUs, it would take 34 days ≈ $4.6 million [reference]

■ Strongly recommended to use these models off-the-shelf (GPT-j, BLOOM,…)
4. Now we have a pretrained language model (PLM). What next?

Transformer
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Training a Transformer: GPT-3

https://lambdalabs.com/blog/demystifying-gpt-3
https://huggingface.co/EleutherAI/gpt-j-6B
https://bigscience.huggingface.co/blog/bloom


● PLMs are good at performing the task they were trained on: reconstructing missing tokens or 
generating next token given context 

○ How to use them for a task we are interested in?

Transformer
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Fine-Tuning Transformers



● PLMs are good at performing the task they were trained on: reconstructing missing tokens or 
generating next token given context 

○ How to use them for a task we are interested in?

● Transfer learning
Through pre-training on the (masked) language modeling task, the model has learned
high-order coocurrence statistics of natural language (high-level patterns).

○ Assumption: These patterns are salient for other NLP tasks
○ Idea: Use the PLM and build upon it by adding specialized layers (decoder heads) for 

downstream tasks

● Flavors of transfer learning in PLMs
○ Vanilla fine-tuning [Howard&Ruder, 2018] (add extra layers, train on task)
○ Adapters [Pfeiffer et al, 2020] (add extra layers within model, freeze model, train on task)
○ Prompting [Radford et al, 2018] (prefix text to model which will make it generate answer)

Transformer
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Fine-Tuning Transformers



Transformer
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Fine-Tuning Transformers

Image from “Illustrated BERT” by Jay Allamar: https://jalammar.github.io/illustrated-bert/

Pretrained 
model

Decoder 
head

Task

https://jalammar.github.io/illustrated-bert/
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Prompting Transformers

Image from [Gao et al, 2021]; https://thegradient.pub/prompting/

https://arxiv.org/abs/2012.15723
https://thegradient.pub/prompting/


Transformer

Standard fine-tuning uses the base PLM and applies it to downstream tasks
● The gap between the pre-training and downstream tasks can be significant
● Requires introduction of new parameters

Prompting narrows this gap by transforming the downstream task similar to the pre-training task
● No new parameters needed
● Requires less (if any) training (zero-shot vs few-shot learning)
● Requires template design (and selection)

“A prompt is a piece of text inserted in the input examples, so that the original task can be 
formulated as a (masked) language modeling problem”
Prompt flavors:

● Discrete – requires finding the best prompt for the task → prompt engineering
● Soft – instead of a text template, use an optimized dense vector

21

Prompting Transformers



Transformer

Some super-large language models (GPT-3: 175B, BLOOM: 176B; T5: 11B) optimizing parameters 
at all is still infeasible or at least, expensive →can we use models without tuning params?

● Zero-shot learning? [✔Kojima et al, 2022; × Ruis et al, 2022,...]
● In-context learning with demonstrations [GPT3; Brown et al, 2020]
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Prompting Transformers

Image from [Language Models are Few-Shot Learners] by Brown et al

https://arxiv.org/abs/2005.14165


Transformer

● Assumption: the model has seen repeated sub-tasks during pre-training
○ By using a few demonstrations (examples from the training set) as a prefix, the model 

could recognize it needs to continue the pattern

23

In-context learning



Transformer

● Assumption: the model has seen repeated sub-tasks during pre-training
○ By using a few demonstrations (examples from the training set) as a prefix, the model 

could recognize it needs to continue the pattern

THIS ACTUALLY WORKS

24

In-context learning



Transformer

● Assumption: the model has seen repeated sub-tasks during pre-training
○ By using a few demonstrations (examples from the training set) as a prefix, the model 

could recognize it needs to continue the pattern

THIS ACTUALLY WORKS

● Even when you use a random distribution for demonstration labels (input distribution and 
output space matter, though) 

25

In-context learning

Images from [http://ai.stanford.edu/blog/understanding-incontext/]

https://arxiv.org/abs/2005.14165
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ChatGPT?

Image from [Tracing Emergent Abilities of Language Models]

We are here

!!

https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
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InstructGPT

Image from [https://openai.com/blog/instruction-following/]

https://openai.com/blog/instruction-following/
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InstructGPT

● InstructGPT is optimized for following instructions
○ GPT-3 fine-tuned on supervised data annotated with expected behavior given prompts
○ Reinforcement learning with human feedback [RLHF; Christiano et al, 2017]

■ The model generates multiple output samples
■ A human ranks outputs best-to-worst
■ The ranking data is used to train a reward model
■ The reward model is used to train a generation policy

● Why go to all this effort?
○ Safety and factuality
○ For the models to be used safely in practice (monetized), they should adhere to desireable behavior
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InstructGPT

● InstructGPT is optimized for following instructions
○ GPT-3 fine-tuned on supervised data annotated with expected behavior given prompts
○ Reinforcement learning with human feedback [RLHF; Christiano et al, 2017]

■ The model generates multiple output samples
■ A human ranks outputs best-to-worst
■ The ranking data is used to train a reward model
■ The reward model is used to train a generation policy

● Why go to all this effort?
○ Safety and factuality

Image from [https://openai.com/blog/instruction-following/]

https://openai.com/blog/instruction-following/
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InstructGPT

● InstructGPT is optimized for following instructions
○ GPT-3 fine-tuned on supervised data annotated with expected behavior given prompts
○ Reinforcement learning with human feedback [RLHF; Christiano et al, 2017]

■ The model generates multiple output samples
■ A human ranks outputs best-to-worst
■ The ranking data is used to train a reward model
■ The reward model is used to train a generation policy

● Why go to all this effort?
○ Desireable behavior

Image from [https://openai.com/blog/improving-language-model-behavior/]

https://openai.com/blog/improving-language-model-behavior/
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Time to retire?
(or switch professions)



Issues with PLMs
Issues

32



Structured planning

Issues | Planning
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Obtained from huggingface BLOOM

https://bigscience.huggingface.co/blog/bloom


Structured planning

Issues | Planning
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Obtained from OpenAI ChatGPT 

Taking a ship 
≠ crossing🤔

https://chat.openai.com/chat


Context-awareness

Issues | Context
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Image from Andre Martins’ slides



Context-awareness

Issues | Context
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Image from [DALLE-2 is Seeing Double; Rassin et al, 2022]

https://arxiv.org/abs/2210.10606


Safety (lack of controllability)

Issues | Safety
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Image from [Doctor GPT-3: Hype or Reality? https://www.nabla.com/blog/gpt-3/]

https://www.nabla.com/blog/gpt-3/


Safety (lack of controllability)?

Issues | Safety
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Image from [https://twitter.com/ncasenmare/status/1600595342210306049]
Note: Source contains more extreme examples

https://twitter.com/ncasenmare/status/1600595342210306049


Safety (lack of controllability)

Issues | Safety

39



Arithmetic (unit conversion)

Issues | Safety

40Obtained from OpenAI ChatGPT 

https://chat.openai.com/chat


Solutions?
Solutions
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Just keep scaling lol

Solutions? | Scaling
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Image from: https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html


Just keep scaling 😬
Solutions? | Scaling

43

Massive energy consumption



● Huge energy consumption
○ Targets: model distillation, training smaller but competitive PLMs 

● Difficulties in handling context
○ Systematic issues rare in short-span context (negations [Hosseini et al, 2021]; polysemy) 
○ Long-range context dependencies are problematic [Beltagy et al, 2020]

● Lack of structured planning
○ Form vs substance – PLMs excellent at form, hallucinate/incoherent at substance 

● Lack of controllability
○ ChatGPT (RLHF) provides soft controllability – bypassed with the right prompt

Limitations of current models

Limitations

44



“A system trained only on form (unstructured text) has a priori no way to learn meaning”
[Bender, Koller, 2020]

Meaning, form and understanding

Limitations

45

The octopus experiment
● Could an extremely intelligent octopus, given (infinite?) time and text achieve language 

understanding?
○ Could it tell you what to do if a bear is attacking you, having never seen or 

experienced a bear?
○ Could it convincingly pose as another human (that you know) while doing so?

● Argument: if not, the octopus has not learned meaning.
● Issue: what is meaning is not defined.

● Counterpoint: if the model can be convincing enough, does it really matter?

Debate links: [Chris Manning] [Christopher Potts] [Julian Michael]

https://twitter.com/chrmanning/status/1598752908211732480
https://chrisgpotts.medium.com/is-it-possible-for-language-models-to-achieve-language-understanding-81df45082ee2
https://julianmichael.org/blog/2020/07/23/to-dissect-an-octopus.html


● Fast-thinking: perceptual tasks
● Slow-thinking: conscious processing, reasoning, planning

PLMs are (mostly) fast-thinkers
● Output most likely next token given context
● No idea where they will end up in ~10 tokens

Thinking: fast and slow (Kahneman, 2011)

Limitations

46



● Fast-thinking: perceptual tasks
● Slow-thinking: conscious processing, reasoning, planning

PLMs are (mostly) fast-thinkers 
● Output most likely next token given previous context
● No idea where they will end up in ~10 tokens

Humans are (sometimes) slow-thinkers
●  Know what you want to say before you start talking

Thinking: fast and slow (Kahneman, 2011)

Limitations
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Image from [Zhou et al, 2021]

https://arxiv.org/abs/2110.08501


Research (applied) directions?
Directions

48



Form vs substance – PLMs excellent at form, hallucinate/incoherent at substance
● Low-temperature softmax & specialized tuning – formulaic models (ChatGPT)
● Content planning [McKeown, 1985]

○ [Hu et al, 2022] Use a set of guidance keyphrases (provided for each statement instance) to which the model 
attends to when generating text (“coherence anchors”) for long-form text generation (ArgGen, OpinionGen)

○ [Zhang et al, 2022] Use a pointer-generator blend which points to a (large) set of Wikipedia entities to ground 
generation in QA

○ [Zhou et al, 2022] Incorporate explicit generation of commonsense knowledge to improve dialogue response 
generation

Although PLMs likely encode all relevant information, making it explicit improves coherence.
  

Structured planning (in text gen)

Directions 

49



  

Structured planning (in text gen)

Directions

50Image from [Hu et al, 2022] 

https://aclanthology.org/2022.acl-long.163.pdf


Discovering (and updating) factual information encoded in PLMs
○ LMs as KBs [Petroni et al, 2019], do LMs have beliefs? [Hase et al, 2021]

PLMs as knowledge bases

Directions
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Image from [Petroni et al, 2019]

https://arxiv.org/pdf/1909.01066.pdf


Discovering (and updating) factual information encoded in PLMs
○ Model (knowledge) editing [Zhu2020, DeCao2021, Mitchell2022, Meng2022,...] 

Editing PLMs

Directions
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Image from [Meng et al, 2022]

https://rome.baulab.info/


Discovering (and updating) factual information encoded in PLMs
○ Model (knowledge) editing [Zhu2020, DeCao2021, Mitchell2022, Meng2022,...] 

Editing PLMs

Directions
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Image from [Meng et al, 2022]

https://rome.baulab.info/


PLMs as explainers

Directions
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Obtained from OpenAI ChatGPT 

https://chat.openai.com/chat


PLMs as explainers

Directions
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Obtained from OpenAI ChatGPT 

https://chat.openai.com/chat


Directions
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Obtained from OpenAI ChatGPT 

PLMs as template generators

https://chat.openai.com/chat


Directions
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Obtained from OpenAI ChatGPT 

PLMs as template generators

https://chat.openai.com/chat


  

 

Takeaways

Takeaways
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● Outstanding points to be resolved before ChatGPT variants can be used
○ Controllability and safety: soft constraints (RLHF) can be bypassed
○ Slow thinking: planning, reasoning, substance
○ Explainability: where is (factual) knowledge stored? How can wrong (biased) 

knowledge be edited (without retraining)? 
○ Arithmetic, factuality – they can’t always be trusted to provide correct information

● Current PLMs are very good at:
○ Generating text with impeccable form
○ Generating standardized templates
○ Summarizing information from training data
○ Understanding and solving tasks with few examples (in-context learning)

 



Thanks!

Questions
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