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A classic: the Bertsimas-Sim model

Presentation outline

Fundaments of Robust Optimization

Multiband Uncertainty in Robust Optimization

An application: Wireless Network Design

All the presented results are strongly based on discussions with experts from our industrial partners,

such as :

and are based on realistic network data. The network models were validated by the Partners, as well.
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EDUCATION

Education and experience

PROFESSIONAL EXPERIENCE

• 2006 - 2009:  Research Fellow,  Sapienza Università di Roma

• 2008 - 2009:  Research Scholar,  Columbia University

• 2009 - 2010:  Post-doc,  Sapienza Università di Roma

• 2004: Bachelor of Science in Industrial Engineering

• 2006: Master of Science in Industrial Engineering

• 2010: Ph.D. in Operations Research

Increasing responsibilities in the Berlin Mathematical Research Community 

• 2010 - 2011:        Post-doc,   Zuse Institute Berlin

• 2011- 2015:         Senior Researcher,  

Technical University Berlin and Zuse Institute Berlin

• 2014 - ongoing:   Project Director, Einstein Center for Mathematics

• From 10-2015:    Head of Research Group, Zuse Institute Berlin

• From 10-2015:    Lecturer, Technical University Berlin and Freie Universität Berlin
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Research: main topics

Theory and applications of:

Mixed Integer Linear Programming

• Polyhedral analysis (strong formulations)

• Cutting-plane methods

Optimization under Data Uncertainty

• Robust Optimization

• Cardinality-constrained uncertainty sets

Capacitated Network Design

• (Strong) valid inequalities characterization

• Efficient flow-routing algorithms

SOURCE

SINK

SOURCE

SINK

PAST time

f(t)

FUTURE

?
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Research: Real-world optimization 

Optical Fiber Network Design

• Capacity and data routing design

• Robustness against traffic uncertainty and failures

Power System Optimization

• Unit Commitment

• Robust energy offering under price uncertainty

Wireless Network Design

• User service coverage with quality-of-service guarantees

• Robustness against signal propagation uncertainty

A MAJOR EUROPEAN  

ELECTRIC UTILITY

MY  AIM: bridging the gap between optimization theory and practice

many other math-in-industry research

and consulting projects for/with e.g.
+
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It’s an uncertain world

Most real-world optimization problems involve uncertain data

For each datum, we know a reference value that however generally differs from the actual value

Some causes:

estimations from historical data

finite numerical representation of computers

errors in measurements 

Some examples:
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Wireless Networks

(signal propagation)

Power Systems

(market price)

Train Scheduling

(delays)
Surgery Scheduling

(requests of operations)



CLASSIC 
OPTIMIZATION

THE VALUE OF ALL
COEFFICIENTS

IS KNOWN EXACTLY

?REASONABLE ASSUMPTION FOR ANY PROBLEM

Data uncertainty in Optimization

Neglecting data uncertainty may lead to bad surprises:

nominal optimal solutions may result heavily suboptimal

nominal feasible solutions may result infeasible

NO!

THEY OVERLOOKED 

DATA UNCERTAINTY…

ROBUST 

SOLUTION

solution that remains feasible even when the input data vary

(PROTECTION AGAINST DATA DEVIATIONS)
=

To avoid such situations, we want to find robust solutions:
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It was not robust…

A simple numerical example may clarify the effects of data deviations:

Suppose that we have computed an optimal solution  x=1, y=1  for some problem with nominal constraint:

However, we have neglected that the coefficient of x may deviate up to 10%, so we could have

OPTIMAL SOLUTION
ACTUALLY INFEASIBLE!

What if this was part of a problem to detect water contamination? 
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An example: traffic uncertainty in Network Design

In every origin-destination pair, traffic volume heavily fluctuates over the week

Overall fluctuation in a network link even more severe 

Solution of the professional: dimension network capacity by (greatly) overestimating demand

Traffic fluctuations of three O-D pairs
in the USA Abilene Network 

(one-week observation)

TIMELINE

Mbps

?CAN WE DEFINE A BETTER ROBUST SOLUTION THROUGH OPTIMIZATION?
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Robust Optimization

NOMINAL PROBLEM ROBUST COUNTERPART
Coefficients 

are uncertain!!!

should reflect the risk aversion of the decision maker

NOMINAL
VALUE

DEVIATION
ACTUAL
VALUE

protection entails the so-called Price of Robustness
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Data uncertainty is modeled as hard constraints that

restrict the feasible set

[Ben-Tal, Nemirovski 98, El-Ghaoui et. al. 97]

NOMINAL 
FEASIBLE SET

ROBUST 
FEASIBLE SET



The Bertsimas-Sim model

Deviation range: each coefficient assumes value in the symmetric range

Row-wise uncertainty: for each constraint i, specifies the max number of coefficients deviating from

1)  w.l.o.g. uncertainty just affects the coefficient matrix

Assumptions:

2) the coefficients are independent random variables following an

unknown symmetric distribution over a symmetric range

ROBUST COUNTERPART
(NON-LINEAR)

ROBUST COUNTERPART [Bertsimas, Sim 04]
(LINEAR AND COMPACT)
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Using the BS model in practice

The data can be easily used to build histograms representing the distribution of the deviations

HISTOGRAM OF 
OBSERVED 

DEVIATIONS

0 dmaxdmin

Example:
no. of coefficients
deviating between
[+40,+50]% from the
nominal value

?ARE WE REALLY ABLE TO EXPLOIT SUCH INFORMATION WITH THE BERTSIMAS-SIM MODEL

0 dmax-dmax

MAX NO.
DEVIATIONS

POSSIBLE 
SINGLE-BAND 

MODELING

According to our past experiences, practitioners would definitely prefer a more refined

representation of the uncertainty

The behaviour of the uncertainty internally to the deviation range is completely neglected

(focus on the extreme deviations)

NO. DEVIATIONS

?

In real-world problems, historical data about the deviations of the uncertain coefficients are

commonly available
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Multiband uncertainty (MB)

MAX NO.
DEVIATIONS

dmaxdmin

a general theoretical study was missing!

strongly data-driven uncertainty set

ADOPT A MULTI-BAND UNCERTAINTY SET

?WHAT CAN WE DO TO INCREASE OUR MODELING CAPACITY?

HISTOGRAM OF 
OBSERVED 

DEVIATIONS

0 dmaxdmin

Example:
no. of coefficients
deviating between
[+40,+50]% from the
nominal value

NO. DEVIATIONS

OUR AIM HAS BEEN TO FILL SUCH GAP
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Formalizing Multiband Uncertainty 

Focus on the coefficients   of each constraint i  (row-wise uncertainty) 

K deviation values for each coefficient

0 dK+dK- dK- +1 d-1d-2 d+1 d+2 dK+ - 1

Lower and upper bounds on the number of coefficients deviating in each band k   

- - - - - -

dk-1 dk

l K
dmaxdmin

NO. DEVIATIONS

No upper bound on band k = 0, i.e.     

There exists a feasible assignment

K deviation bands such that each band k corresponds with range

u K
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General example of construction

Focus on the coefficients   of each constraint i  (row uncertainty) 

For each coefficient       , we have a number of past observations   

Compute the percentage deviation of an observation from the nominal value

Build the histogram representing the distribution of the percentage deviations for the 
considered constraint

0 [1020][010]
-

[-100]

PROBABILITY

-
[-20-10] [2030]

OBSERVED DISCRETE DISTRIBUTION 
(ALL COEFFICIENTS  IN THE CONSTRAINT)

% DEVIATION FROM 
NOMINAL VALUE

40%

30%

5% 5%

20%

Example

POSSIBLE MULTI-BAND SET FOR THE CONSTRAINT 
(assuming 100 coefficients in the constraint)

0 [1020][010]
-

[-100]

NO. COEFFICIENTS

-
[-20-10] [2030]

-/+ 10% OF THE EXPECTED NUMBER OF 
COEFFICIENTS FALLING IN EACH BAND OF 

THE HISTOGRAM

U -1= 33

L -1 = 27
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MAXIMIZATION
OF TOTAL DEVIATION

BOUNDS ON THE NO.
OF COEFFICIENTS 

FALLING IN BAND k

EACH COEFFICIENT FALLS 
IN AT MOST ONE BAND

DEV01

The max-deviation auxiliary problem under MB 

MILP

NON-LINEAR
ROBUST 

COUNTERPART
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The Robust Counterpart under MB

PROPOSITION 1 (Büsing & D’Andreagiovanni 12)

The polytope associated with (DEV01) is integral.

THEOREM 1 (Büsing & D’Andreagiovanni 12)

The Robust Counterpart of (MILP) under multi-band uncertainty is equivalent to:

Proof based on exploiting the integrality of (DEV01) and strong duality

Proof based on showing that the coefficient  matrix of (DEV01) is totally unimodular

If the original problem is linear, then also the counterpart is linear 
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Multiband Robustness by cutting planes

Separation problem

GOAL: finding a robust optimal solution for multi-band set D through a cutting-plane algorithm

Given a solution , is this solution robust feasible for constraint i ?

robust feasible for i

If this condition does not hold and y* is an optimal solution to (DEV01) then

is a valid inequality for the original formulation and cuts off x (robustness cut)

THEOREM 2 (Büsing & D’Andreagiovanni 12)

Separating a robustness cut corresponds with solving a min-cost flow problem

Proof based on showing the 1:1 correspondence between integral flows and assignments y of (DEV01)
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Efficient separation of robustness cuts

.

.

.

.

.

.

Solving (DEV01) is equivalent to solving a min-cost flow problem on the following graph (B. & D’A.12)

1:1 correspondence between integral flows of value n and complete assignments y of (DEV01)

The cost relation between corresponding integral flow and assignment is: d(x,y) = - c(f)

The following chain of equalities holds:

s tvj wk

one node vj for each variable xj

one node wk for each band K

source and sink

SET OF NODES

SET OF EDGES

(each associated with a triple (flow LB, flow UB, unitary cost))

one edge (s, vj) with triple (0,1,0) for each xj

one edge (vj , wk) with triple (0,1, - dij
k xj) 

for each xj and k

one edge (wk , t) with triple (lk, uk,0) for each k

PROPERTIES:

Send n unit of flows from s to t at minimum cost

Fabio D’Andreagiovanni – Multiband Robust Optimization



Basic robust cutting plane algorithm

PROBLEM DATA

DOES A
VIOLATED ROBUSTNESS

CUT EXIST?

FIND THE MAXIMUM DEVIATION

ALLOWED BY THE MULTI-BAND SET

FOR EACH CONSTRAINT OF (MILP)

SOLVE (MILP)

OPTIMAL & ROBUST

SOLUTION

NOYES

DEFINE THE NOMINAL PROBLEM

(MILP)

ADD THE ROBUSTNESS

CUT TO (MILP)

MULTIBAND 

UNCERTAINTY SET
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0-1 Programs with Multiband cost uncertainty

NOT JUST a trivial extension of the Bertsimas-Sim results and proofs!

THEOREM (Büsing & D’Andreagiovanni 12)

The robust optimal solution can be obtained by solving a polynomial number of

nominal problems with modified cost coefficients. Tractability and approximability of

the algorithm used to solve the nominal problem are preserved.

UNCERTAIN
COST VECTOR

FEASIBLE SET
=

SUBSET OF ALL
THE 0-1 VECTORS
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Multiband Robustness - further results
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Probability bounds of constraint violation

(Büsing & D’Andreagiovanni 2012) 

(Strong) valid inequalities for 0-1 Linear Programs

(D‘Andreagiovanni & Raymond, 2013)

Robust cutting planes for 0-1 linear programs with correlated uncertain right-hand-sides

(D‘Andreagiovanni, 2014)

Dominance among multiband uncertainty sets

(great reduction in the compact robust counterpart size)

(Büsing & D’Andreagiovanni 2012) 



Comparing Gamma and Multiband Robustness

In the general case, MB can be less or more conservative than BS, depending upon the multiband

structure (in our computational experience MB was always less conservative, when using realistic

multiband sets and comparing them with realistic and fair Gamma-parameter)

Anyway, we can derive some sufficient conditions for MB to be less conservative

(by using majorizations/minorizations that however reduces the actual advantage of MB over BS)

BAND IN WHICH THE i-TH 
LARGEST COEFFICIENT FALLS

Remarks:

Useful condition to check that “rational” histogram representations of major distributions

like the exponential and the normal ensures that MB is less conservative than BS

Multiband linearity requires: ( m  n )       K   additional constraints

( m + m n)  K   additional variables

The condition is independent from the solution x
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Multiband Robustness - applications

MULTIBAND
ROBUST

OPTIMIZATION

ROBUST POWER ASSIGNMENT 

IN WIRELESS NETWORKS 

(fading uncertainty)

ROBUST WIRELESS 

NETWORK JAMMING

(jamming uncertainty)

ROBUST TIME-OFFSET SETTING

IN DVB-T NETWORKS

(time propagation uncertainty)

ROBUST HARVEST

SCHEDULING

(timber production uncertainty)

MULTIPERIOD CAPACITATED

NETWORK DESIGN

(traffic uncertainty)

ENERGY OFFERING FOR A PRICE-TAKER (price uncertainty)

Reduced price of robustness w.r..t. what you have seen at AIRO 2015
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An application to Wireless Networks

A Wireless Network can be essentially described as a set of transmitters T which
provide for a telecommunication service to a set of receivers R located in a target area

Radio-electrical (e.g., power emission, frequency channel)

Positional (antenna height, geographical location)

set the values of the parameters of each transmitter to
maximize a profit function, while ensuring a minimum
quality of service for each served receiver

WIRELESS NETWORK

DESIGN PROBLEM

(WND)

Every transmitter is characterized 

by a set of parameters
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Service coverage (1)

r is covered if the signal-to-interference ratio (SIR) is higher than a given threshold:

(SIR constraint)

Every receiver r picks up signals from all the transmitters,

BUT: 

coverage is provided by a single transmitter,
chosen as server of r

all the other transmitters interfere the serving signal

POWER RECEIVED
FROM SERVER Tx

SUM OF POWER FROM 
INTERFERING Txs

COVERAGE
THRESHOLD

If we introduce a continuous variable to represent power emission of transmitter t,
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A fading coefficient art is usually computed through a propagation model and depends on several

factors such as:

the distance between t and r

the presence of obstacles

the weather

The fading coefficients are naturally subject to uncertainty

Neglecting uncertainty may lead to plans with unexpected coverage holes

EXPECTED
COVERAGE

ACTUAL
COVERAGE

Propagation and fading
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Robust Power Assignment Problem

set the power emission of each transmitter to provide
coverage to a set of receivers while minimizing the
total power emission

POWER ASSIGNMENT

PROBLEM

(PAP)

POWER MINIMIZATION

SIR CONSTRAINTS

POWER BOUNDS

We take into account fading uncertainty

by subtracting the worst power deviation

in the l.h.s. of each SIR constraint

- DEV(a,p)

To solve this robust problem we can adopt multiband robustness and either:

• solve its linear and robust counterpart

• find a robust optimal solution by the robust cutting-plane approach
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Computational experience

TEST-BED:  15  WiMAX instances  with up to 180 transmitters and 2118 testpoints

defined in collaboration with wireless network professionals

fading coefficients assumed to be independent log-normal random variables (ITU Recommendation)

5 deviations bands (2 negative, 2 positive)

all instances solved within one hour (Cplex 12.1, 4GB RAM)

INSTANCE ID

NO. CONSTRAINTS AND VARIABLES
(nominal problem)

PRICE OF ROBUSTNESS %
(Gamma-Robustness)

NO. CONSTRAINTS AND VARIABLES
(compact robust counterpart)

REDUCTION IN THE
PRICE OF ROBUSTNESS %

(Multiband Robustness
wrt Gamma-Robustness)
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Concluding remarks

- compact robust counterpart (purely linear if the nominal problem is purely Linear)

- efficient separation of robustness cuts by min-cost flow
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Robust Optimization is a modern and effective paradigm for dealing with data uncertainty

We introduced Multiband Robust Optimization to generalize and refine the Bertsimas-Sim model

- experiments on real-world problems indicate a sensible reduction in the price of robustness
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FUNDAMENTAL RESULTS:


