Fukushima Daiichi NPP

April 21 2011, Ki Sig Kang

Tsunami Phenomenon

Earthquake and affected NPPs

Higashidori		Automatic Shutdown	Inspection Outage	
The second second	Higashidori	-	Unit 1	
Akita	Onagawa	Units 1-3	-	
Onagawa	Fukushima Daiichi	Units 1-3	Units 4-6	
Kashiwazaki Kariwa Nagaoka Fukushima Dalichi	e ^{Fukushima} Daini	Unis 1-4	-	
	Tokai Daini	(only 1 unit)	-	
Fukushima Daini		11 Units	4 Units	
Kofu Toky Tokai II Numere ear Hamaoka ear of	I Units (BWRs) under operation vere successfully shutdown after the arthquake occurred at 14:46 (06:46) f 11 March 2011			

Fukushima Daiichi NPP

Unit	Output (MW)	Start Operation	Manufacturers
No.1	460, BWR-3, 400 FA (68T, UO2)	1971⁄3	GE
No.2	784, BWR-4, 548 FA (94T, UO2)	1974⁄7	GE/Toshiba
No.3	784, BWR-4, 548 FA (95T, MOX)	1976⁄3	Toshiba
No.4	784, BWR-4, 548 FA (94T, UO2)	1978/10	Hitachi
No.5	784	1978⁄4	Toshiba
No.6	1100	1979/10	GE⁄Toshiba
Total	4696		

13 Emergency Diesel Generators, each unit has 2 DG, but No.6 has three DG(one- air cooled) 5

Fukushima 1 Npp unit 1 ~ 4

Dai Ini NPS before Tsunami

Dai Ini NPS after Tsunami

March 28 1979

1987 End State Configuration

April 26 1987 Chernobyl 4 Destroyed

Molten Fuel – Elephant Foot

A lot of equipment will be placed inside the "Arch", i.e. lifting cranes, mechanisms and other industrial facilities..

BWR information

Mark 1 Containment Fukushima Daiichi #1

RPV : 19.7 m RPV In-dia: 4.8 M **RPV Thick: 16 Cm** Fuel: UO2 **Refuelling : 13 M** FA: 400 FA length : 3.66 m **Operation Press. : 70.7 bar Operation Temp : 285 oC Thermal Power : 1380 MWt** Elec. Power : 460 Mwe **Turbine : 1500 RPM Cont. Pressure : 4.3 bar** Total vol : 3410 M3 HP sys Press : 19 bar SPF capacity : 900 FA

Const : 1967 7.25 COD : 1971.03.26

17

BWR Design Features – small primary containment housed in large building

Upper part of Reactor Vessel - Service Floor

BWR Mark I Containment

22

Reactor Vessel Assembly

- Vessel
- Fuel Assembly and Control Rods
- Recirculation Jet Pump Assembly
- Core Support Structure
- Steam separator (dryer)
- Core Shroud

Normal Operation

Number of Npp Units : 443 (as of Dec 2010)

Reactor Building Arrangement

BWR Mark 1

PWR PCCV*

* Pre-stressed Concrete Containment Vessel

Comparison of Design Features

Parameters	PWR	BWR
Steam Production	Secondary System Steam Generator	Directly in the System
Pressure	Varies, 15.5 Mpa Controlled by Pressurizer	Constant, 7.2 Mpa
Produced steam	Goes through steam generators then to turbine; nonradioactive	Goes through separators and steam dryers then to turbine; radioactive
Zircaloy mass of Fuel assembly	Relatively Small	Relatively Large Larger quantities of H_2 generated
Containment Building	Large Volume for non-condensible gas retention,	Small Volume, Minimal capacity for non-condensible gas retention,
Gen III, Gen III+ reactors	AP-1000, EPR, VVER-1200, APR- 1400, APWR	ABWR, ESBWR

Engineering Review of Accident Sequences

Verification of the design Tsunami

Consideration of Tide

Fukushima Daiichi Accident Process(2 and 4)

Radiological Impacts

Typical BWR spent fuel pool

- Cooling (3MW)
- Shielding
- Preventing criticality
- About 12m x 12m x 12m
- Concrete thickness is about 1.2 – 2.4 m with a 6 -13 mm steel liner
- Dense fuel racks

Monitoring locations near Fukushima site

- 1) Measurement of air dose rate, 2) Measurement of cumulative dose
- 3) Measurement of radioactive substance concentration in soil
- 4) Offshore monitoring, 5) Aerial monitoring

Radiology

0.01 mSv: x-ray image in dental care

0.1 mSv: a x-ray image from lungs

2 mSv: flight attendances got from cosmic radiation every year

3.7 mSv: typical background radiation level in EU

20 mSv: dose from computer tomography

50 mSv: dose limit for radiation worker

3000~6000 mSv: fatal dose

Tokyo : 0.1 mSv

Extended Tepco Limit: 250 mSv Initial Tepco Limit: 100 mSv, Maximum Allowed 50 mSv/a,

Site work and Future plan

Current Priorities

- Six Project Teams have been established under the Integrated Headquarters:
 - 1) Radiation Shielding/Radioactive Materials Release Reduction
 - 2) Defuelling /Fuel Transportation
 - 3) Remote Monitoring/Sampling
 - 4) Long Term Cooling Circuit Establishment
 - 5) Contaminated Water Management
 - 6) Environmental Impact evaluation
- TEPCO's current priorities are on 4) and 5), and on Power System Recovery, which is the basis of all activities.

Future Plans

TEPCO Chairman's Announcement on 17 April

- The 1st Stage (3 months):
 - Cool the reactors in a stable manner; and
 - Prevent water with high levels of radioactivity from flowing out of the plant.
- The 2nd Stage (6 to 9 months):
 - Achieve a cold shutdown of the reactors; and
 - Reduce the total amount of radioactive water.

Chief Cabinet Secretary approved the plan as "sufficiently feasible".

Safety Assessments as a result of the Fukushima Accident

- Stress Tests Proposed by EU
 - Earthquake, flooding and other external events exceeding design basis
 - Prolonged loss of power and/or ultimate heat sink
 - Combination of above plus multiple units effected simultaneously
 - Accident management, including core melt down and loss of shielding of the spent fuel pools
 - Finalized in 2011

Impact of stress tests on additional NDT

• Any other developments that may impact on the role of NDT

Challenges and Opportunities

N and S Poles

- Opposite poles of the magnet
- Do not exist separately.
- Opportunity for some can be a challenge for others,
- Challenge today can become an opportunity tomorrow

All these world challenges will increase the opportunities to strengthen the achievements in Nuclear Power Development