

Prof. Dr. Jasmin Smajic

Modern Numerical Methods for Computational Electromagnetics

Institute of Energy Technology (IET)
HSR - University of Applied Sciences of Eastern Switzerland Oberseestrasse 10, Rapperswil, Switzerland jasmin.smajic@hsr.ch

Institute of Electromagnetic Fields (IEF) Swiss Federal Institute of Technology (ETH) Gloriastrasse 35, Zurich, Switzerland smajici@ethz.ch

Outline

- Introduction

■ Numerical methods for computing 3-D vector fields
■ Boundary value problem (BVP) - eddy-current analysis
■ Boundary value problem (BVP) - wave propagation analysis
■ Overview: FEM, BEM, MMP, FEM-MMP, DG-FEM

- Discussion: Possibilities, advantages, drawbacks, problems, etc.
- Applications

■ Electromagnetic transients in high voltage equipment

- Electromagnetic fields in transformers and machines

■ Microwave and optical devices
■ Outlook

Introduction

Mathematical model

Partial Differential Equation (PDE): $D \vec{f}(\vec{x})=0, \vec{x} \in \Omega$

Boundary Conditions (BC):
$B \vec{f}(\vec{x})=0, \vec{x} \in \partial \Omega$

Material 2

Model parameters
Material: $(\mu, \sigma, \varepsilon)$
Frequency: (f)
Sources: $\left(\vec{E}_{s}, \vec{H}_{s}, \vec{J}_{s}\right)$

Introduction

University of Applied Sciences of Eastern Switzerland

Introduction

TE-mode 01 real(S), f=1.8(GHz)

TE-mode 01 abs(S), $\mathrm{f}=1.8(\mathrm{GHz})$

hochschule für technik

Numerical Methods for Computing 3-D Vector Fields

BVP for Eddy-current Analysis ${ }^{1}$

$$
\begin{align*}
& \nabla \times\left(\frac{1}{\mu} \nabla \times \vec{A}\right)+j \omega \sigma \vec{A}=\vec{J}_{S}, \text { in } \Omega \tag{1}\\
& \vec{n} \times \vec{A}=0, \text { over } \partial_{D} \Omega \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\vec{n} \times\left(\frac{1}{\mu} \nabla \times \vec{A}\right)=0, \text { over } \partial_{N} \Omega \tag{3}
\end{equation*}
$$

${ }^{1}$ J. Smajic, "How to Perform Electromagnetic Finite Element Analysis", the International Association for the Engineering Modelling, Analysis \& Simulation Community, NAFEMS Ltd., Hamilton, UK, 2016.

HSR

Smajic, Numerical Methods for Computational Electromagnetics, June 13, 2016
HOCHSCHULE FÜR TECHNIK
University of Applied Sciences of Eastern Switzerland

Numerical Methods for Computing 3-D Vector Fields

BVP for Stationary Current Distribution ${ }^{1}$

$$
\begin{align*}
& \nabla(\sigma \nabla \varphi)=0, \text { in } \Omega_{c} \tag{22}\\
& \varphi=0, \text { over } \partial_{\text {outlet }} \Omega_{c} \\
& \sigma \frac{\partial \varphi}{\partial n}=-\frac{I}{S_{\text {inlet }}}, \text { over } \partial_{\text {inlet }} \Omega_{c} \\
& \sigma \frac{\partial \varphi}{\partial n}=0, \text { over } \partial_{\text {lateral }} \Omega_{c}
\end{align*}
$$

${ }^{1}$ J. Smajic, "How to Perform Electromagnetic Finite Element Analysis", the International Association for the Engineering Modelling, Analysis \& Simulation Community, NAFEMS Ltd., Hamilton, UK, 2016.

Numerical Methods for Computing 3-D Vector Fields

BVP for Wave Propagation Analysis ${ }^{1}$

$$
\begin{align*}
& \nabla \times\left(\frac{1}{\mu_{r}} \nabla \times \vec{E}\right)+j \omega \mu_{0} \sigma \vec{E}-\omega^{2} \mu_{0} \varepsilon \vec{E}=0 \text { in } \Omega \subseteq R^{3} \tag{1}\\
& \vec{n} \times \vec{E}=0, \text { over } \partial_{P E C} \Omega \tag{2}\\
& \vec{n}_{1} \times(\nabla \times \vec{E})+j k_{z} \vec{n}_{1} \times\left(\vec{n}_{1} \times \vec{E}\right)= \\
& +2 j k_{z} \vec{n}_{1} \times\left(\vec{n}_{1} \times \vec{E}_{i}\right), \text { over } \partial_{P O R T 1} \Omega \tag{3}\\
& \vec{n}_{2} \times(\nabla \times \vec{E})+j k_{0} \vec{n}_{2} \times\left(\vec{n}_{2} \times \vec{E}\right)=0, \text { over } \partial_{P O R T 2} \Omega \tag{4}\\
& k_{z}=\sqrt{\omega^{2} \mu \varepsilon-k_{t}^{2}} \tag{6}\\
& k_{t m n}^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2} \tag{7}
\end{align*}
$$

${ }^{1}$ J. Smajic, "How to Perform Electromagnetic Finite Element Analysis", the International Association for the Engineering Modelling, Analysis \& Simulation Community, NAFEMS Ltd., Hamilton, UK, 2016.

Numerical Methods for Computing 3-D Vector Fields

Vector Finite Element Method (FEM)

$$
\begin{equation*}
\iiint_{\left(\Omega_{c}\right)} \vec{N}_{i} \cdot \nabla \times\left(\frac{1}{\mu_{c}} \nabla \times \vec{A}_{c}\right) d V+\iiint_{\left(\Omega_{c}\right)} j \omega \sigma_{c} \vec{N}_{i} \cdot \vec{A}_{c} d V=\iiint_{\left(\Omega_{c}\right)} \vec{N}_{i} \cdot \vec{J}_{S} d V \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \left.\oiint_{\left(\partial \Omega_{c}\right)} \left\lvert\, \vec{n}_{c} \times\left(\frac{1}{\mu_{c}} \nabla \times \vec{A}_{c}\right)\right.\right] \cdot \vec{N}_{i} d S+\iiint_{\left(\Omega_{c}\right)}\left(\frac{1}{\mu_{c}} \nabla \times \vec{A}_{c}\right) \cdot\left(\nabla \times \vec{N}_{i}\right) d V+\iiint_{\left(\Omega_{c}\right)} j \omega \sigma_{c} \vec{N}_{i} \cdot \vec{A}_{c} d V=\iiint_{\left(\Omega_{c}\right)} \vec{N}_{i} \cdot \vec{J}_{S} d V \tag{7}\\
& \oiint_{\left(\partial \Omega_{a}\right)}\left[\vec{n}_{a} \times\left(\frac{1}{\mu_{a}} \nabla \times \vec{A}_{a}\right) \left\lvert\, \cdot \vec{N}_{i} d S+\iiint_{\left(\Omega_{a}\right)}\left(\frac{1}{\mu_{a}} \nabla \times \vec{A}_{a}\right) \cdot\left(\nabla \times \vec{N}_{i}\right) d V=0\right.\right. \tag{10}
\end{align*}
$$

$\vec{n}_{c} \cdot \vec{B}_{c}=\vec{n}_{c} \cdot \vec{B}_{a} \Rightarrow \vec{n}_{c} \cdot\left(\nabla \times \vec{A}_{c}\right)=\vec{n}_{c} \cdot\left(\nabla \times \vec{A}_{a}\right)$
$\vec{n}_{c} \times \vec{H}_{c}=\vec{n}_{c} \times \vec{H}_{a} \Rightarrow \vec{n}_{c} \times\left(\frac{1}{\mu_{c}} \nabla \times \vec{A}_{c}\right)=\vec{n}_{c} \times\left(\frac{1}{\mu_{a}} \nabla \times \vec{A}_{a}\right)$

Numerical Methods for Computing 3-D Vector Fields

Vector Finite Element Method (FEM)

$$
\begin{align*}
& \vec{A}(x, y, z)=\sum_{j} \vec{N}_{j}(x, y, z) A_{j} \tag{18}\\
& \Omega=\bigcup_{e=1}^{N} \Omega^{e} \tag{19}
\end{align*}
$$

$$
\begin{equation*}
[K]\{A\}=\left([B]_{\text {crutcur }}+[C]_{o}\right)\{A\}=\{b\} \tag{21}
\end{equation*}
$$

Numerical Methods for Computing 3-D Vector Fields

Vector Finite Element Method (FEM)

$$
\begin{align*}
& \vec{A}(x, y, z)=\sum_{j} \vec{N}_{j}(x, y, z) A_{j} \tag{18}\\
& \vec{N}_{i}^{e}(x, y)=l_{i}^{e} \cdot\left[N_{i n_{1}}^{e}(x, y) \cdot \nabla N_{i n_{2}}^{e}(x, y)-N_{i n_{2}}^{e}(x, y) \cdot \nabla N_{i n_{1}}^{e}(x, y)\right]
\end{align*}
$$

HSR

HOCHSCHULE FÜR TECHNIK
RAPPERSWIL
Smajic, Numerical Methods for Computational Electromagnetics, June 13, 2016

University of Applied Sciences of Eastern Switzerland

Numerical Methods for Computing 3-D Vector Fields

Vector Finite Element Method (FEM) ${ }^{2,3}$

$\vec{A}(x, y, z)=\sum_{j} \vec{N}_{j}(x, y, z) A_{j}$
$\vec{N}_{i}^{e}(x, y)=l_{i}^{e} \cdot\left[N_{i n_{1}}^{e}(x, y) \cdot \nabla N_{i n_{2}}^{e}(x, y)-N_{i n_{2}}^{e}(x, y) \cdot \nabla N_{i n_{1}}^{e}(x, y)\right]$
Vector Shape Function: vN_{2}

${ }^{2} \mathrm{H}$. Whitney, "Geometric integration theory", Princeton University Press, Princeton, NJ, 1957.
${ }^{3}$ J. C. Nedelec, "Mixed Finite Elements in R3", Numer. Meth., Vol. 35, pp. 315-341, 1980.
HSR
hochschule für technik
RAPPERSWIL

Numerical Methods for Computing 3-D Vector Fields

$$
\begin{aligned}
& \text { Vector Finite Element Method (FEM) } \\
& \begin{array}{c}
\vec{A}(x, y, z)=\sum_{j} \vec{N}_{j}(x, y, z) A_{j} \\
\vec{N}_{i}^{e}(x, y)=l_{i}^{e} \cdot\left[N_{i n_{1}}^{e}(x, y) \cdot \nabla N_{i n_{2}}^{e}(x, y)-N_{i n_{2}}^{e}(x, y) \cdot \nabla N_{i n_{1}}^{e}(x, y)\right] \\
\text { Vector Shape Function: } \mathrm{vN}_{2}
\end{array}
\end{aligned}
$$

${ }^{2} \mathrm{H}$. Whitney, "Geometric integration theory", Princeton University Press, Princeton, NJ, 1957.
${ }^{3}$ J. C. Nedelec, "Mixed Finite Elements in R3", Numer. Meth., Vol. 35, pp. 315-341, 1980.
HSR
hoChschule für technik
RAPPERSWIL
Smajic, Numerical Methods for Computational Electromagnetics, June 13, 2016

University of Applied Sciences of Eastern Switzerland

Numerical Methods for Computing 3-D Vector Fields

$$
\iiint_{\left(V_{e}\right)}^{\square} f(x, y, z) d V=\int_{0}^{1} \int_{0}^{u} \int_{0}^{u} f(u, v, w)|J| d u d v d w=\int_{0}^{1} \int_{0}^{u} \int_{0}^{u} f(u, v, w) \frac{V_{e}}{6} d u d v d w
$$

RAPPERSWIL FÜR TECHNIK
Smajic, Numerical Methods for Computational Electromagnetics, June 13, 2016

University of Applied Sciences of Eastern Switzerland

Numerical Methods for Computing 3-D Vector Fields

Numerical surface integration

$$
\iint_{\left(\Delta^{e}\right)} f(x, y, z) d S=\int_{0}^{1} \int_{0}^{u} f(u, v)|J| d u d v=\int_{0}^{1} \int_{0}^{u} f(u, v) 2 \Delta_{e} d u d v
$$

University of Applied Sciences of Eastern Switzerland

Numerical Methods for Computing 3-D Vector Fields

Vector Finite Element Method (FEM)

$$
\begin{align*}
& \nabla \times\left(\frac{1}{\mu} \nabla \times \vec{A}\right)+j \omega \sigma \vec{A}=\vec{J}_{S}, \text { in } \Omega \tag{1}\\
& \vec{n} \times \vec{A}=0 \text {, over } \partial_{D} \Omega \tag{2}\\
& \vec{n} \times\left(\frac{1}{\mu} \nabla \times \vec{A}\right)=0, \text { over } \partial_{N} \Omega \tag{3}
\end{align*}
$$

Numerical Methods for Computing 3-D Vector Fields

Vector Finite Element Method (FEM)

$$
\begin{align*}
& \sigma_{\text {air }}=0(S / m), \sigma_{c u}=3.5 \cdot 10^{7}(\mathrm{~S} / \mathrm{m}) \\
& \nabla \times\left(\frac{1}{\mu} \nabla \vec{A}\right) j \omega \sigma \vec{A}=\vec{J}_{S}, \text { in } \Omega \tag{1}\\
& \vec{n} \times \vec{A}=0, \text { over } \partial_{D} \Omega \tag{2}\\
& \vec{n} \times\left(\frac{1}{\mu} \nabla \times \vec{A}\right)=0, \text { over } \partial_{N} \Omega \tag{3}
\end{align*}
$$

Numerical Methods for Computing 3-D Vector Fields

Vector Finite Element Method (FEM)

$$
N_{\text {edges }}=73^{\prime 2} 276
$$

$$
\text { Density }=\frac{N_{n z}}{N_{\text {edges }}^{2}} \cdot 100 \%=0.022 \%
$$

$$
\sigma_{\text {air }}=10^{4}(\mathrm{~S} / \mathrm{m}), \sigma_{c u}=3.5 \cdot 10^{7}(\mathrm{~S} / \mathrm{m})
$$

$$
\kappa(B)=\|B\| \cdot\left\|B^{-1}\right\|=8.04 \cdot 10^{26}
$$

$$
\kappa(C)=\|C\| \cdot\left\|C^{-1}\right\|=1.91 \cdot 10^{5}
$$

$$
\kappa(K)=\|K\| \cdot\left\|K^{-1}\right\|=3.38 \cdot 10^{25}
$$

Numerical Methods for Computing 3-D Vector Fields

Vector Finite Element Method (FEM)

Numerical Methods for Computing 3-D Vector Fields

Vector Finite Element Method (FEM)

$\nabla \times\left(\frac{1}{\mu} \nabla \times \vec{A}\right)+j \omega \sigma \vec{A}=\vec{J}_{S}, \operatorname{in} \Omega$

$$
\begin{equation*}
\vec{n} \times \vec{A}=0, \text { over } \partial_{D} \Omega \tag{2}
\end{equation*}
$$

$\vec{n} \times\left(\frac{1}{\mu} \nabla \times \vec{A}\right)=0$, over $\partial_{N} \Omega$
$\vec{J}=\vec{J}_{S}+\vec{J}_{E C}=\vec{J}_{S}+\sigma \vec{E}_{E C}=\vec{J}_{S}-j \omega \sigma \vec{A}$

Numerical Methods for Computing 3-D Vector Fields

Vector Finite Element Method (FEM)

$$
N_{\text {edges }}=73^{\prime 2} 276
$$

$$
\text { Density }=\frac{N_{n z}}{N_{\text {edges }}^{2}} \cdot 100 \%=0.022 \%
$$

$$
\sigma_{\text {air }}=10^{4}(\mathrm{~S} / \mathrm{m}), \sigma_{c u}=3.5 \cdot 10^{7}(\mathrm{~S} / \mathrm{m})
$$

$$
\kappa(B)=\|B\| \cdot\left\|B^{-1}\right\|=8.04 \cdot 10^{26}
$$

$$
\kappa(C)=\|C\| \cdot\left\|C^{-1}\right\|=1.91 \cdot 10^{5}
$$

$$
\kappa(K)=\|K\| \cdot\left\|K^{-1}\right\|=2.88 \cdot 10^{7}
$$

Numerical Methods for Computing 3-D Vector Fields

Scalar + Vector Finite Element Method (FEM), $\vec{H}-\Phi$ field formulation

Non-conducting region

$$
\begin{equation*}
\vec{H}_{n}=\vec{H}_{s}-\nabla \Phi, i n \Omega_{n} \tag{4}
\end{equation*}
$$

$\frac{\partial \Phi}{\partial n}=\vec{n} \cdot \vec{H}_{s}$, over $\partial_{N} \Omega_{n}$
$\Phi=0$, over $\partial_{D} \Omega_{n}$
${ }^{4}$ J. P. Webb, B. Forghani, "T- Ω Method Using Hierarchical Edge Elements", IEE Proceedings - Science, Measurements and Technology, Vol. 142, No. 2, pp. 133-141, 1995.

Numerical Methods for Computing 3-D Vector Fields

Scalar + Vector Finite Element Method (FEM), $\vec{H}-\Phi$ field formulation

$$
\begin{aligned}
& \nabla \times\left(\frac{1}{j \omega \mu_{0} \sigma} \nabla \times \vec{H}_{c}\right)+\mu_{r} \vec{H}_{c}=0, \text { in } \Omega_{c} \\
& \nabla\left(\mu_{r} \nabla \Phi\right)=0, \text { in } \Omega_{n} \\
& \vec{n} \times \vec{H}_{c}=\vec{n} \times \vec{H}_{s}-\vec{n} \times \nabla \Phi, \text { over } \partial_{c n} \Omega \\
& \mu_{r n} \frac{\partial \Phi}{\partial n}=\mu_{r n} \vec{n} \cdot \vec{H}_{s}-\mu_{r} \vec{n} \cdot \vec{H}_{c}, \text { over } \partial_{c n} \Omega \\
& \vec{n} \times \vec{H}_{c}=0, \text { over } \partial_{D} \Omega_{c} \\
& \vec{n} \times\left(\frac{1}{\sigma} \nabla \times \vec{H}_{c}\right)=0, \text { over } \partial_{N} \Omega_{c} \\
& \frac{\partial \Phi}{\partial n}=\vec{n} \cdot \vec{H}_{s}, \text { over } \partial_{N} \Omega_{n} \\
& \Phi=0, \text { over } \partial_{D} \Omega_{n}
\end{aligned}
$$

${ }^{4}$ J. P. Webb, B. Forghani, "T- Ω Method Using Hierarchical Edge Elements", IEE Proceedings - Science, Measurements and Technology, Vol. 142, No. 2, pp. 133-141, 1995.

Numerical Methods for Computing 3-D Vector Fields

Scalar + Vector Finite Element Method (FEM), $\vec{H}-\Phi$ field formulation

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A^{(1)}+A^{(2)}+A^{(3)} & B \\
C & D
\end{array}\right]\left\{\begin{array}{c}
H_{e c}^{c} \\
\Phi^{n}
\end{array}\right\}=\left\{\begin{array}{l}
b^{c} \\
b^{n}
\end{array}\right\}} \\
& A_{i j}^{(1)}=\frac{1}{j \omega \mu_{0}} \sum_{e}^{e} \iiint_{\left(\Omega_{i}^{i}\right)} \frac{1}{\sigma, j \in \Omega_{e}^{e}} \frac{1}{\sigma}\left(\nabla \times \vec{N}_{i}\right) \cdot\left(\nabla \times \vec{N}_{j}\right) d V \\
& A_{i j}^{(2)}=\sum_{\substack{e \\
i, j \in \AA^{\prime}}}^{\iiint_{(\Omega)}} \int_{r c} \vec{N}_{i} \cdot \vec{N}_{j} d V \\
& A_{i j}^{(3)}=\frac{1}{j \omega \mu_{0}} \sum_{i, j \in \Delta_{c n}^{s}} \iint_{\left(\Delta_{i c}\right)} \vec{N}_{i} \cdot\left[\vec{n}_{c} \times\left(\frac{1}{\sigma} \nabla \times \vec{N}_{j}\right)\right] d S \\
& B_{i j}=\left\{\begin{array}{ll}
-1 & j=n_{1}^{(\text {eadgei) }} \\
+1 & j=n_{2}^{\text {eage } i)}
\end{array}, \quad K_{i j}=0, K_{i i}=1\right. \\
& b_{i}^{c}=0 \\
& D_{i j}=\sum_{\substack{e \\
i, j \in \Omega_{n}^{e}\left(s_{n}^{e}\right)}}^{\iint_{r n}} \mu_{m} \nabla N_{i} \cdot \nabla N_{j} d V \\
& C_{i j}=-\sum_{e} \iint_{\left(\Delta s_{m}\right.} N_{i} \mu_{r c} \vec{c}_{c} \cdot \vec{N}_{j} d S \\
& b_{i}^{n}=\sum_{\substack{e \\
i \in \Delta_{n v}^{s}}}^{\iint_{\Delta v i v}^{s}} \int_{r n}^{d} \mu_{r n} N_{i} \vec{n}_{n} \cdot \vec{H}_{s} d S
\end{aligned}
$$

Numerical Methods for Computing 3-D Vector Fields

Scalar + Vector Finite Element Method (FEM), $\vec{H}-\Phi$ field formulation

Numerical Methods for Computing 3-D Vector Fields

Scalar + Vector Finite Element Method (FEM), $\vec{H}-\Phi$ field formulation

Numerical Methods for Computing 3-D Vector Fields

Scalar + Vector Finite Element Method (FEM), $\vec{H}-\Phi$ field formulation

HSR

University of Applied Sciences of Eastern Switzerland

Numerical Methods for Computing 3-D Vector Fields

Boundary Element Method (BEM), $\vec{H}-\Phi$ field formulation

$$
\left\lvert\, \begin{array}{lc}
-\frac{1}{2} \vec{J}(\xi)+\frac{1}{4 \pi} \oiint_{(\partial \Omega)}\left[\vec{n}_{\xi} \times\left(\vec{J}(\eta) \times \nabla_{\xi} K(\eta, \xi)\right)\right] d S_{\eta}- & \mathrm{G}(\eta, \xi)=\frac{1}{\mathrm{r}_{\eta, \xi}} \\
-\frac{1}{4 \pi} \oiint_{(\partial \Omega)}\left[\sigma_{m}(\eta)\left(\vec{n}_{\xi} \times \nabla_{\xi} G(\eta, \xi)\right)\right] d S_{\eta}=-\left[\vec{H}_{0}^{t}(\xi)+\vec{H}_{\delta}^{t}(\xi)\right] & \forall \eta, \xi \in \partial \Omega \\
\hline-\frac{1}{2} \sigma_{m}(\xi)-\frac{1}{4 \pi} \oiint_{(\partial \Omega)}\left[\sigma_{m}(\eta)\left(\vec{n}_{\xi} \cdot \nabla_{\xi} G(\eta, \xi)\right)\right] d S_{\eta}- & \mathrm{K}(\eta, \xi)=\frac{\mathrm{e}^{-(1+j) \cdot \mathrm{k} \mathrm{r}_{n, \xi}}}{\mathrm{r}_{\eta, \xi}} \\
-\frac{\mu}{4 \pi \mu_{0}} \oiint_{(\partial \Omega)}\left[\vec{n}_{\xi} \cdot\left(\vec{J}(\eta) \times \nabla_{\xi} K(\eta, \xi)\right)\right] d S_{\eta}=-\left[\vec{H}_{0}^{n}(\xi)+\vec{H}_{\delta}^{n}(\xi)\right] & \mathrm{k}=\sqrt{\omega \mu_{0} \mu_{r} \sigma / 2}
\end{array}\right.
$$

\vec{J} - virtual current σ_{m} - virtual magnetic charge
J. Smajic, et al., "BEM-based Simulations in Engineering Design," in "Boundary Element Analysis:

Mathematical Aspects and Applications," (Edited by M. Schanz and O. Steinbach) Lecture Notes in Applied and Computational Mechanics, Vol. 29, pp. 281-352, Springer Verlag, Berlin, Heidelberg, New York, 2007.

Numerical Methods for Computing 3-D Vector Fields

Boundary Element Method (BEM), $\vec{H}-\Phi$ field formulation

J. Smajic, et al., "BEM-based Simulations in Engineering Design," in "Boundary Element Analysis: Mathematical Aspects and Applications," (Edited by M. Schanz and O. Steinbach) Lecture Notes in Applied and Computational Mechanics, Vol. 29, pp. 281-352, Springer Verlag, Berlin, Heidelberg, New York, 2007.

Numerical Methods for Computing 3-D Vector Fields

Boundary Element Method (BEM), $\vec{H}-\Phi$ field formulation
Kernel expansion: Fast Multipole Technique (FMT)
$|x-y| \gg 0($ farfield $) \Rightarrow$
$K(x, y) \approx K_{m}\left(x, y ; x_{0}, y_{0}\right)=\sum_{(\mu, \nu) \in I_{m}} K_{(\mu, \nu)}\left(x_{0}, y_{0}\right) \cdot X_{\mu}\left(x, x_{0}\right) \cdot Y_{\nu}\left(y, y_{0}\right)$
Taylor-, Multipole-, Cebysev- expansion

$$
\left|\left|x-x_{0}\right|+\left|y-y_{0}\right| \leq \eta \cdot\right| x_{0}-y_{0} \mid \quad \text { Far-field condition }
$$

GMRES with clustering

$$
v=\tilde{A} \cdot u=N \cdot u+\sum_{(\sigma, \tau) \in F} X_{\sigma}^{T}\left(F_{\sigma \tau}\left(Y_{\tau} \cdot u\right)\right)
$$

Matrix-vector multiplication

J. Smajic, et al., "BEM-based Simulations in Engineering Design," in "Boundary Element Analysis: Mathematical Aspects and Applications," (Edited by M. Schanz and O. Steinbach) Lecture Notes in Applied and Computational Mechanics, Vol. 29, pp. 281-352, Springer Verlag, Berlin, Heidelberg, New York, 2007.

Numerical Methods for Computing 3-D Vector Fields

Boundary Element Method (BEM), $\vec{H}-\Phi$ field formulation

GMRES with clustering

$v=\tilde{A} \cdot u=N \cdot u+\sum_{(\sigma, \tau) \in F} X_{\sigma}^{T}\left(F_{\sigma \tau}\left(Y_{\tau} \cdot u\right)\right) \quad$ Matrix-vector multiplication
J. Smajic, et al., "BEM-based Simulations in Engineering Design," in "Boundary Element Analysis: Mathematical Aspects and Applications," (Edited by M. Schanz and O. Steinbach) Lecture Notes in Applied and Computational Mechanics, Vol. 29, pp. 281-352, Springer Verlag, Berlin, Heidelberg, New York, 2007.

Numerical Methods for Computing 3-D Vector Fields

Boundary Element Method (BEM), $\vec{H}-\Phi$ field formulation

Fig. 40. The rank distribution over the blocks of a typical BEM matrix approximated by H-matrices and ACA (an eddy-current example from the Table 1 with 9224 DOFs).
J. Smajic, Z. Andjelic, M. Bebendorf, "Fast BEM for Eddy-Current Problems Using H-matrices and Adaptive Cross Approximation", IEEE Transactions on Magnetics, Vol. 43, Issue 4, , pp. 1269-1272, April 2007.

Numerical Methods for Computing 3-D Vector Fields

Boundary Element Method (BEM), $\vec{H}-\Phi$ field formulation

J. Smajic, Z. Andjelic, M. Bebendorf, "Fast BEM for Eddy-Current Problems Using H-matrices and Adaptive Cross Approximation", IEEE Transactions on Magnetics, Vol. 43, Issue 4, , pp. 1269 -1272, April 2007.

HSR

Numerical Methods for Computing 3-D Vector Fields

Coupled FEM - MMP

Fig. 1. Simple 2-D MS problem for demonstrating the MMP technique (left) and coupled FEM-MMP (right) is shown. The field sources are the windings (orange region) with known current densities (J_{1} and J_{2}). A ferromagnetic core (gray region) Ω_{1} surrounds the air window (blue region) $\Omega_{2}\left(\mu_{r}=1\right)$.
J. Smajic, Ch. Hafner, J. Leuthold, "Coupled FEM-MMP for Computational Electromagnetics", IEEE Transactions on Magnetics, Vol. 52, No. 3, pp. 7207704, March 2016.

Numerical Methods for Computing 3-D Vector Fields

Coupled FEM - MMP

$$
\begin{align*}
& \Omega_{1}: A_{z 1}(x, y)=\sum_{p=1}^{N_{\text {me }}^{(1)}}\left\{B_{0}^{p(1)} \cdot \ln r_{p}\right. \\
&\left.+\sum_{k=1}^{m_{p}} \frac{1}{r_{p}^{k}}\left[B_{k}^{p(1)} \cdot \cos \left(k \varphi_{p}\right)+D_{k}^{p(1)} \cdot \sin \left(k \varphi_{p}\right)\right]\right\} \tag{3}\\
& \Omega_{2}: A_{z 2}(x, y)=A_{z s}+\sum_{p=1}^{N_{\text {me }}^{(2)}}\left\{B_{0}^{p(2)} \cdot \ln r_{p}\right. \\
&\left.+\sum_{k=1}^{m_{p}} \frac{1}{r_{p}^{k}}\left[B_{k}^{p(2)} \cdot \cos \left(k \varphi_{p}\right)+D_{k}^{p(2)} \cdot \sin \left(k \varphi_{p}\right)\right]\right\} \tag{4}\\
& \partial_{12 \otimes \Omega}: \vec{n} \times \vec{H}_{1}=\vec{n} \times \vec{H}_{2} \Rightarrow \vec{t} \cdot \vec{H}_{1}=\vec{t} \cdot \vec{H}_{2} \tag{5}\\
& \partial_{12 \odot} \Omega: \vec{n} \cdot \vec{B}_{1}=\vec{n} \cdot \vec{B}_{2} \Rightarrow A_{z 1}=A_{z 2} \tag{6}\\
& \partial_{1 \odot \Omega}: \vec{n} \cdot \vec{B}_{1}=0 \Rightarrow A_{z 1}=0 \tag{7}
\end{align*}
$$

J. Smajic, Ch. Hafner, J. Leuthold, "Coupled FEM-MMP for Computational Electromagnetics", IEEE Transactions on Magnetics, Vol. 52, No. 3, pp. 7207704, March 2016.

HSR

Numerical Methods for Computing 3-D Vector Fields

Coupled FEM - MMP

Fig. 2. Left: MMP matrix of the chosen MS problem. Different blocks of the equation system (8) are noticeable. One empty block (bottom right) related to (7) is visible. Right: Relative residual of the H-field and B-field over the interface boundary obtained from MMP, with the horizontal line on the bottom as a reference.
J. Smajic, Ch. Hafner, J. Leuthold, "Coupled FEM-MMP for Computational Electromagnetics", IEEE Transactions on Magnetics, Vol. 52, No. 3, pp. 7207704, March 2016.

HSR

hochschule für technik
RAPPERSWIL

Numerical Methods for Computing 3-D Vector Fields

Coupled FEM - MMP

$$
\begin{aligned}
& \Omega_{1}: \oint_{\left(\partial_{12} \Omega\right)} \frac{1}{\mu_{1}} N_{i} \nabla A_{z 1} \cdot \vec{n} d l-\iint_{\left(\Omega_{1}\right)} \frac{1}{\mu_{1}} \nabla N_{i} \cdot \nabla A_{z 1} d S=0 \\
& \oint_{\left(\partial_{12} \Omega\right)} N_{i} \vec{t} \cdot \vec{H}_{2 m} d l+\iint_{\left(\Omega_{2}\right)} \frac{1}{\mu_{1}} \nabla N_{i} \cdot \nabla A_{z 1} d S \\
& =-\oint_{\left(\partial_{12} \Omega\right)} N_{i} \vec{t} \cdot \vec{H}_{s} d l \\
& \partial_{12} \Omega: A_{z 1}-\sum_{p=1}^{N_{\mathrm{me}}}\left\{B_{0}^{p} \cdot \ln r_{p}\right. \\
& \left.+\sum_{k=1}^{m_{p}} \frac{1}{r_{p}^{k}}\left[B_{k}^{p} \cdot \cos \left(k \varphi_{p}\right)+D_{k}^{p} \cdot \sin \left(k \varphi_{p}\right)\right]\right\}=A_{z s} . \\
& {\left[\begin{array}{ll}
A_{\mathrm{FEM}} & C_{\mathrm{FM} \otimes} \\
C_{\mathrm{MF} \odot} & B_{\mathrm{MMP}}
\end{array}\right] \cdot\left\{\begin{array}{l}
x_{\mathrm{FEM}} \\
x_{\mathrm{MMP}}
\end{array}\right\}=\left\{\begin{array}{l}
b_{\otimes} \\
b_{\odot}
\end{array}\right\}}
\end{aligned}
$$

J. Smajic, Ch. Hafner, J. Leuthold, "Coupled FEM-MMP for Computational Electromagnetics", IEEE Transactions on Magnetics, Vol. 52, No. 3, pp. 7207704, March 2016.

HOCHSCHULE FÜR TECHNIK

Numerical Methods for Computing 3-D Vector Fields

Coupled FEM - MMP

J. Smajic, Ch. Hafner, J. Leuthold, "Coupled FEM-MMP for Computational Electromagnetics", IEEE Transactions on Magnetics, Vol. 52, No. 3, pp. 7207704, March 2016.
hoChschule für technik
RAPPERSWIL

Numerical Methods for Computing 3-D Vector Fields

Coupled FEM - MMP

Fig. 7. Results of the linear (left) and nonlinear (middle and right) FEM-MMP analysis are presented. The regions of the magnetic saturation are visible in the nonlinear results. They are slightly asymmetric due to the asymmetry of the winding system.
J. Smajic, Ch. Hafner, J. Leuthold, "Coupled FEM-MMP for Computational Electromagnetics", IEEE Transactions on Magnetics, Vol. 52, No. 3, pp. 7207704, March 2016.

Numerical Methods for Computing 3-D Vector Fields

Discontinuous Galerkin Time-domain FEM

$$
\begin{align*}
& \iiint_{\left(\Omega_{e}\right)} \vec{N}_{i} \cdot(\nabla \times \vec{E}) d V+\iiint_{\left.\Omega_{e}\right)} \mu \vec{N}_{i} \cdot \frac{\partial \vec{H}}{\partial t} d V=-\frac{1}{2} \oiint_{\left(\partial \Omega_{e}\right)} \vec{N}_{i} \cdot\left(\vec{n} \times \vec{E}^{+}-\vec{n} \times \vec{E}\right) d S \tag{12}\\
& \iiint_{\left(\Omega_{e}\right)} \vec{N}_{i} \cdot(\nabla \times \vec{H}) d V-\iiint_{\left(\Omega_{i}\right)} \varepsilon \vec{N}_{i} \cdot \frac{\partial \vec{E}}{\partial t} d V=-\frac{1}{2} \oiint_{\left(\partial \Omega_{e}\right)} \vec{N}_{i} \cdot\left(\vec{n} \times \vec{H}^{+}-\vec{n} \times \vec{H}\right) d S \tag{13}
\end{align*}
$$

Continuous Galerkin

Discontinuous Galerkin

Numerical Methods for Computing 3-D Vector Fields

Discontinuous Galerkin Time-domain FEM

$$
\begin{align*}
& \left\{H_{e}^{\left(k+\frac{1}{2}\right)}\right\}=\left\{H_{e}^{\left(k-\frac{1}{2}\right)}\right\}-\Delta t\left[A_{e}^{2}\right]^{-1}\left(\left[A_{e}^{1}\right]\left\{E_{e}^{(k)}\right\}+\frac{1}{2} \sum_{f=1}^{4}\left[\left[B_{e p}^{1}\right]\left\{E_{e}^{+(k)}\right\}-\left[B_{e e}^{1}\right]\left\{E_{e}^{(k)}\right\}\right]\right) \tag{21}\\
& \left\{E_{e}^{(k+1)}\right\}=\left\{E_{e}^{(k)}\right\}+\Delta t\left[A_{e}^{3}\right]^{-1}\left(\left[A_{e}^{1}\right]\left\{H_{e}^{\left(k+\frac{1}{2}\right)}\right\}+\frac{1}{2} \sum_{f=1}^{4}\left[\left[B_{e p}^{1}\right]\left\{H_{e}^{+\left(k+\frac{1}{2}\right)}\right\}-\left[B_{e e}^{1}\right]\left\{H_{e}^{\left(k+\frac{1}{2}\right)}\right\}\right]\right) \tag{22}
\end{align*}
$$

Matrix entries have the following form

$$
\begin{align*}
& A_{e}^{1}(i, j)=\iiint_{(\Omega)} \vec{N}_{i} \cdot\left(\nabla \times \vec{N}_{j}\right) d V \tag{23}\\
& A_{e}^{2}(i, j)=\iint_{\left(\Omega_{e}\right)} \mu \vec{N}_{i} \cdot \vec{N}_{j} d V \tag{24}\\
& A_{e}^{3}(i, j)=\iint_{\left(\Omega_{i}\right)} \varepsilon \vec{N}_{i} \cdot \vec{N}_{j} d V \tag{25}\\
& B_{e p}^{1}(f, i, j)=\iint_{\left(S_{e}^{\prime}\right)} \vec{N}_{i} \cdot\left(\vec{n} \times \vec{N}_{j}^{+}\right) d S \tag{26}\\
& B_{e e}^{1}(f, i, j)=\iint_{\left(S_{e}^{\prime}\right)} \vec{N}_{i} \cdot\left(\vec{n} \times \vec{N}_{j}\right) d S \tag{27}
\end{align*}
$$

Heuristic stability condition

$$
\begin{equation*}
\Delta t=\frac{\min \left(\frac{h_{l}}{3} \sqrt{\mu_{r} \varepsilon_{r}} \frac{1}{p^{2}}\right)}{c} \tag{28}
\end{equation*}
$$

Numerical Methods for Computing 3-D Vector Fields

Discontinuous Galerkin Time-domain FEM

TM11,real(Ey), $\mathrm{f}=1.816(\mathrm{GHz})$

TM11,real(Ez), $\mathrm{f}=1.816(\mathrm{GHz})$

HSR

HOCHSCHULE FÜR TECHNIK
RAPPERSWIL
Smajic, Numerical Methods for Computational Electromagnetics, June 13, 2016

University of Applied Sciences of Eastern Switzerland

Summary

■ FEM: sparse matrices, ill-conditioned matrices, efficiency depends on field formulation.

- BEM: dense matrices, matrix compression and preconditioning, singular integrals.

■ MMP: boundary methods, sources away from boundary, no singular integrals, control of accuracy.

■ FEM-MMP: possibility to solve nonlinear problems without air-box.
■ DG-TD-FEM: no large linear system to solve, leapfrog time-stepping scheme, conditionally stable.

