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Daily Load Curve
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Load Forecasting

 Based on historical data
 Relatively simple task
 Error within 5%
 Temperature has the greatest influence (HVAC)
 Influence of certain specific events
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Load Forecasting

 1998 FIFA World Cup Semi-Finals: France - Croatia, 
Wednesday 8th July 1998

Niko Mandić, „What 
connects football 
and power 
system?,” EGE 
3/2008, pp. 44-50
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Load Forecasting
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Renewable Energy Sources (RES)

 Wind energy is the most popular renewable energy 
source

 Wind power capacity of 744 MW is expected to be 
achieved within a few years

 Wind power capacity of 
421 MW is already 
in operation

 Problematic location
 Production factor around 25%
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Renewable Energy Sources
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Potential Solutions

Technology Congestion Electricity 
production

Reserve 
provision

Positive
impact on 
emissions

FACTS devices
Gas power plants
Grid 
reconfiguration
Energy storage
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Potential Solutions

Technology Congestion Electricity 
production

Reserve 
provision

Positive
impact on 
emissions

FACTS devices + - - -/+
Gas power plants - + + -
Grid 
reconfiguration + - - -/+

Energy storage + -/+ + -/+
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Energy Storage in Power 
Systems

 Benefits:
 Levelling of the load curve
 Ancillary services (frequency containment reserve –

“primary reserve”, frequency restoration reserve –
“secondary reserve”, replacement reserve – “tertiary 
reserve” and voltage stability)

 Reduction of congestion
 Greater utilization of wind and solar energy
 More cost-effective operation of the system (less fuel, 

less power plant cycling, ...)
 Transition from the preventive to the corrective N-1 

security operation
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Energy Storage Technologies



15

Energy Storage in the World
 27 MW during 15 min NiCd – Fairbanks, AL (2003)
 20 MW during 15 min flywheel – Stephentown, NY (2011)
 32 MW during 15 min Li-Ion – Laurel Mountain, WV (2011) 
 36 MW during 40 min Lead Acid – Notrees, TX (2012)
 8 MW during 4 h Li-Ion – Tehachapi, CA (2014)
 25 MW during 3 h Flow bat. – Modesto, CA (2014)
 5 MW during 1 h Li-Ion – Schwering, Germany (2014)
 6 MW during 1:40 h Li-ion – Leighton Buzzard, UK (2014)

 Interactive map available at
http://www.energystorageexchange.org/projects
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Energy Storage in Italy
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Large-scale
Energy Storage Models

 Price-maker vs. price-taker
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Energy Storage in the 
Day-Ahead Market

Hour Price Hour Price Hour Price
1 40,12 9 71,77 17 64,23
2 42,40 10 72,03 18 70,49
3 42,32 11 64,39 19 81,21
4 40,03 12 59,28 20 76,01
5 39,97 13 53,08 21 59,95
6 43,05 14 54,51 22 57,63
7 56,45 15 53,07 23 45,00
8 77,53 16 59,00 24 45,63

 Prices at CROPEX-u on Monday, February 26th 2018
(Eur/MWh)
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Large-scale
Energy Storage Models

 Energy storage
does not want to 
influence market
prices

 Limited profitability
when acting only in
energy market

Energy Storage Operating
Decisions (Offers and Bids)

Market Clearing Simulation

Storage Offers
and Bids

Cleared Quantities
Market Prices
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Electricity Bill Components

 Energy payment (high and low tariff)
 Distribution and transmission network charge
 Charge for meter-reading 
 Charge for incentivizing RES

 Power factor charge
 Capacity charge
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Load Diagram
 Energy storage can reduce the cost of electricity supply
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Storage Charging Profiles
 Reduced peak load payments and energy payments
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Storage Charging Profiles
 Reduced peak load payments and energy payments
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Batteries

 Battery is a device that coverts chemical energy of its 
active materials directly into electrical energy through an
electrochemical redox reaction

 In case of rechargeable batteries, the process is reversible
 Batteries have an efficient energy conversion since they 

use electrochemical process to convert chemical energy 
into electricity

 Although the term battery is often used, the basic unit in 
which the reaction occurs is known as battery celI

 Battery consists of multiple cells connected in series and 
parallel, depending on the desired voltage and capacity
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Batteries in Transmission
Systems 
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Batteries in Transmission
Systems 
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Batteries in Microgrids
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Batteries in Microgrids
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Batteries in Electric Vehicles



33

Batteries in Electric Vehicles
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Batteries in Electric Vehicles
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Batteries in Electric Vehicles
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What do all of These
Models Have in Common?

 They use the same battery model :



Rechargeable Batteries

 Common technologies:
 Lead acid
 Nickel based
 Nickel-cadmium (NiCd)
 Nickel-metal-hydride (NiMH)

 Lithium-ion (li-ion)
 Generally speaking – all rechargeable battery

technologies have similar characteristics
 Today’s practical demonstration: 
 Li-ion cell
 Lead acid battery pack
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Rechargeable Batteries

 Main characteristics: voltage and capacity
 Capacity – ampere-hours (Ah) or watt-hours (Wh)
 E.g. battery rated at 10 Ah delivers:

 Current of 10 A for 1 hour 
 Current of 5 A for 2 hours, etc.

 Capacity degrades with time and usage
 C-rate = battery charging/discharging speed
 1C corresponds to Ah rating, e.g.:

 1C for a 10 Ah battery = 10 A
 2C for a 10 Ah battery = 20 A
 0.5C for a 10 Ah battery = 5 A
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Rechargeable Batteries

 Specific energy
 Defines battery capacity

per unit mass
 Wh/kg

 Energy density
 Defines battery capacity

per unit volume
 Wh/l

 Specific power
 Maximum available

power per unit mass
 W/kg

 Power density
 Maximum available

power per unit volume
 W/l
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 Battery price
 Usually expressed per unit energy
 $/kWh
 Price of a new li-ion battery is cca. 500-800 $/kWh



Series/Parallel Configurations

 Series connection
 Increases voltage

 Parallel connection
 Increases maximum current
 Increases Ah-capacity

 Battery energy (Wh-capacity)
 Does not change with series/parallel

configuration
 Depends on the total number of connected cells
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Custom-Made Converter

 Custom made bidirectional AC/DC converter 
for battery charging/discharging

 Specifications:
 Nominal output power: 1 kW
 Output voltage: 0 – 20 VDC
 Output current: -50 to 50 ADC
 Input: 50 Hz, 230 VAC
 Input/output voltage/current measurements 
 Analog signals 0 – 10 VDC 
 Digital signals via isolated USB or RS-485

 Remote battery voltage sensing (increased 
accuracy)
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Custom-Made Converter

 Three-stage topology
 Bidirectional grid inverter
 Resonant HF transformer
 Output bidirectional interleaved buck-boost 

converter
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Single‐phase
inverter

HF 
transformer Buck‐Boost

Voltage/current 
measurements/

setpoints
Voltage/current 
measurements



Custom-Made Converter

 Communication and control – NI LabVIEW
 Converter is connected to host PC
 Communication – NI cRIO via Ethernet
 SCADA – NI LabVIEW
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Custom-Made Converter
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Single‐phase
inverter

HF 
transformer Buck‐Boost

Voltage/current 
measurements/

setpoints
Voltage/current 
measurements



Lithium-ion batteries 

 The most widespread battery technology is 
lithium-ion (li-ion)

 Li-ion cell types
 Cylindrical
 18650 
 21700

 Prismatic
 Pouch
 Commonly

Li-polymer
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Experimental Research

 18650 li-ion cells
 Tesla model S
 Laptop computers
 Power tools, etc.

 Samsung ICR18650-32A
 Chemistry: Lithium Cobalt Oxide (LiCoO2) – LCO 

or ICR
 Nominal voltage: 3.75 V
 Nominal capacity: 3.2 Ah
 Minimum capacity: 3.1 Ah
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Datasheet – ICR18650-32A
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Charging Characteristic

 Constant-current/constant-voltage (CC/CV) 
charging
1. Current is constant while voltage rises to a 

predefined threshold
2. Voltage is constant while current gradually

decreases
3. Full charge is reached after the current drops to 

some small value (typically 3-5% of the Ah rating)
 Adjustable parameters:
 Constant charging current
 Voltage threshold
 Cut-off current
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Charging Characteristic

 Charging conditions:
 Constant current: 1.6 A (0.5C)
 Voltage threshold: 4.35 V
 Duration: 180 min
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Experimentally
obtained



Charging Characteristic
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Experimentally
obtained



Discharging Characteristic

 Current profile depends on the application
 Varying current – various practical applications
 Constant current (CC) – laboratory experiments

 Full discharge is reached after voltage drops
to some predefined cut-off value

 Unlike charging duration, discharge durations
are approximately consistent with the C-rate
 0.5C – cca. 2 hours
 1C – cca. 1 hour
 2C – cca. 30 minutes
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Discharging Characteristic

 Discharging conditions:
 Constant current: 1.6 A (0.5C)
 Cut-off voltage: 2.75 V
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Experimentally
obtained



Discharging Characteristic
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Experimentally
obtained



State-of-Charge (SoC)

 SoC measured against charging duration
 Series of partial charges applied (10-min steps) 

followed by immediate controlled full discharge
 Cut-off voltage: 2.75 V




ூ೏೔ೞ ఛೖషభ ାூ೏೔ೞሺఛೖሻ

ଶ
ே
௞ୀଵ ௞

 Charging:
 𝐼௖௛ ൌ 1.6 𝐴 (0.5C)
 𝐼௖௛ ൌ 3.2 𝐴 (1C)

 Discharging:
 𝐼ௗ௜௦ ൌ 1.6 𝐴 (0.5C) – both cases
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Experimentally
obtained



Charging Power and Energy

 Electrical power 
characteristic during full 
charge (0%-100% SoC)

 𝑃 ൌ 𝑈 · 𝐼;  ሾWൌV∙Aሿ

 Electrical energy:
E ൌ ׬ 𝑃 𝜏 𝑑𝜏;  ሾJൌW∙hሿ ௧

଴
 Full charge energy:

12.6 Wh (0.5C), 12.9 Wh (1C)
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Experimentally
obtained



Capacity

 Maximal number of Ampere-hours (Ah), or
Watt-hours (Wh), that can be drawn from a 
battery on a single discharge

 Fully charged battery → discharge to cut-
off voltage

 ௗ௜௦
்

଴

 ா ௗ௜௦
்

଴
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Experimentally
obtained



Rate Capacity Effect

 Higher discharge current = lower capacity
 Also known as ”Peukert’s law”
 Applied mostly to lead-acid batteries
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100% capacity = 3.3 Ah

Experimentally
obtained



Capacity Recovery Effect

 End of discharge ↔ 
predefined cut-off 
voltage

 Waiting period after end 
of discharge → voltage 
recovers → battery can 
be discharged further
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 This effect is more expressed for higher discharge
currents
 The higher the current during first discharge, the more Ah can

be extracted on a second discharge (after the waiting period)
 This effect becomes insignificant for relatively low

discharge currents – 0.1C and lower

Experimentally
obtained



Internal Resistance

 Every battery has internal resistance from:
 Electrodes
 Electrolyte
 Connections, wiring etc.

 Causes voltage drop when charge/discharge 
current is applied
 Ohm’s law: 𝑈 ൌ 𝐼 · 𝑅

 Open circuit voltage (OCV) ↔ no current flow
 Closed circuit voltage (CCV) ↔ current flow
 Charging – raises CCV
 Discharging – lowers CCV
 ”Rubber band effect”
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Internal Resistance

Voltage drop due to internal resistance
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Experimentally
obtained



Battery Efficiency

 Cause of energy losses – internal resistance
→ heat dissipation

 Types of efficiencies (1):
 Coulombic
 Voltaic
 Energy (includes both coulombic and voltaic)

 Types of efficiencies (2):
 Charging
 Discharging
 Overall (charging + discharging)
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Battery Efficiency

Efficiency is predominantly dependent on the 
charging/discharging current
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Experimentally
obtained
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Bact to This Formulation…
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Improvement

S. I. Vagropoulos and A. G. Bakirtzis, "Optimal Bidding Strategy for Electric Vehicle 
Aggregators in Electricity Markets," in IEEE Transactions on Power Systems, vol. 28, 
no. 4, pp. 4031-4041, Nov. 2013.



66

Let’s Talk Energy

 Battery hour-ahead energy charging ability
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Approximation

 Approximation of the ∆soe–soe
function using SOS2
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Case Study

 10 MWh battery scaled to laboratory capacity of 10 
Wh

 Acting in the EPEX day-ahead market, prices on 
January 15, 2018.

 The obtained (dis)charging schedules of each of the 
models, i.e. the baseline mode, the linear CC-CV 
model and the proposed energy charging model, are
then verified for feasibility in a laboratory experiment
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Case Study

 The battery is considered to be at 50% state of energy 
at the beginning of the optimization horizon and is 
required to end up at that level

 Experimentally obtained overall battery energy 
efficiency (η) amounts to 0.81 for 1C simulations, and 
to 0.866 for 0.2C simulations



70

Results for 1C Rate
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Results for 1C Rate
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Results for 1C Rate
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Results for 1C Rate

 If the charging quantity cannot be met, the electricity not charged 
is sold at 70% of the purchasing price

 If the discharging quantity cannot be met, the additional electricity 
is purchased at 140% of the day-ahead price
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Results for 0,2C Rate
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Results for 0,2C Rate
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Results for 0,2C Rate
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Results for 0,2C Rate
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Conclusion

Procedure to obtain accurate dependency of the battery 
charging capacity on its state of energy: 
1. record battery charging/discharging characteristic for 

the desired charging/discharging currents;
2. obtain charging/discharging energies by integrating 

the charging/discharging power in time; 
3. determine battery capacity and overall energy 

efficiency;
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Conclusion

Procedure to obtain accurate dependency of the battery 
charging capacity on its state of energy: 
4. derive the time − soe curve from the charging energy 

characteristic;
5. derive soe − ∆soe curve from the time − soe curve; 
6. approximate nonlinear soe−∆soe curve by a 

piecewise linear function in order to obtain input 
parameters for the proposed model


