

Integral Inherently Safe Light Water Reactor (I²S-LWR) Concept

Razvoj koncepta integralnog lakovodnog reaktora s inherentnim sigurnosnim karakteristikama

Bojan Petrovic Nuclear and Radiological Engineering Georgia Tech

> FER, University of Zagreb Zagreb, Croatia February 10, 2014

Outline

- Georgia Institute of Technology (Georgia Tech) and Nuclear and Radiological Engineering (NRE) Program
- Nuclear Power in US and Worldwide
- Development trends:
 - New construction in USA
 - SMRs and "Safety-by-Design"
 - High-temperature high-efficiency reactors
- Next generation LWRs: Integral Inherently Safe Light Water Reactor – I²S-LWR
- Concluding remarks
- Q&A

Introductory Remarks on Nuclear Power in USA and Worldwide

Worldwide use of nuclear power

- 2012: 435 reactors, 370.0 GWe (NN 3/2012)
- 2013: 433 reactors, 371.5 GWe (NN 3/2013)
- About 1/6-th world electricity
- Over 60 new reactors in 14 countries under construction (WNA, 2/2013)
- Major source of electricity in several countries

	,					
	# Units	Net MWe	# Units	Net MWe	# Units	Net MWe
Reactor Type	(in operation)		(forthcoming)		(total)	
Pressurized light-water reactors (PWR)	267	246 555.1	89	93 014	356	339 569.1
Boiling light-water reactors (BWR)	84	78 320.6	6	8 056	90	86 376.6
Gas-cooled reactors, all models	17	8 732	1	200	18	8 932
Heavy-water reactors, all models	51	25 610	8	5 1 1 2	59	30 722
Graphite-moderated reactors, all models	15	10 219	0	0	15	10 219
Liquid-metal-cooled reactors, all models	1	560	4	1 516	5	2 076
Totals	435	369 996.7	108	107 898	543	477 894.7

NUCLEAR POWER UNITS BY NATION

POWER REACTORS BY TYPE, WORLDWIDE

March 2012

Georgia

NUCLEAR NEWS

79

Nuclear power plants in the U.S.

- 100 operating reactors in 31 states
- Close to 20% electricity produced
- 65 PWRs, 35 BWRs
- ~102 GWe

Pressurized Water Reactor (PWR)

Boiling Water Reactor (BWR)

FER, University of Zagreb – February 10, 2014

I²S–LWR

Nuclear Power Plants – Most Expensive Electricity?

Energy production cost

Nuclear power has low electricity production cost (lowest-cost source of electricity over the past 10+ years; it will be initially higher but still competitive for the newly constructed NPPs)

(Source: NEI)

Georgia Tech

FER, University of Zagreb – February 10, 2014

Nuclear Power – What is New in USA?

VG 9

I²S–LWR

Nuclear power – What is new in the US?

- New Gen-III+ build in US
- New/advanced designs
 - Gen-IV
 - SMRs
 - Other (I²S-LWR)
- Impact of The Great East Japan Earthquake (Fukushima)
- Push for "Accident Tolerant Fuel (ATF)" [fuel with enhanced accident tolerance...]
- Nuclear Waste Long term considerations
 - Yucca Mountain (intended site of deep geological nuclear waste repository)
 - Interim Storage
 - Blue Ribbon Commission on America's Nuclear Future Final Report
- New/old fuel cycle options
 - Thorium fuel

New construction in the U.S.

 4 new units (AP1000) under construction in USA: 2 in Georgia (Vogtle 3 and 4) and 2 in South Carolina (V.C. Summer 2 and 3); each unit 1,170 MWe

Aerial photograph of Vogtle 3 and 4 construction site. Unit 3 is located at left and top of photo and Unit 4 to the right and bottom. Heavy lift derrick crane foundation in center. August 11, 2011

© 2011 Southern Company, Inc. All rights reserved.

TVA: 2 projects to complete

Georgia

Tech

- Watts Bar 2, PWR (1,180 MWe)
- Bellefonte 1, AL (1,260 MWe), project started in 1974, suspended in 1988, 8/2011 approved, targeting 2018-2020

VG 11

-2-LWR

FER, University of Zagreb – February 10, 2014

New construction in the U.S.

- 2 new units (AP1000) under construction in Georgia, Vogtle 3 and 4 (2x1,170 MWe)
- <u>Vogtle 3 and 4 Construction Photos</u> <u>Georgia Power Company.pdf</u>

Georgia Tech

FER, University of Zagreb – February 10, 2014

July 2013

VG 12

I²S–LWR

©2013 Georgia Power Company All rights reserved

New/advanced designs

- New/advanced designs
 - "Gen-IV" (Generation IV nuclear power plants) 6 types
- New/advanced designs pursued at GT NRE
 - SMR (Small Modular Reactors), up to several hundred MWe Reduces the required investment from several billion \$ to <\$1B Extremely high interest recently
 - I²S-LWR Inherent safety features
 - Liquid-salt cooled reactors (LSCR), ORNL
 High temperature, high efficiency, low reject heat, low pressure
 - Hybrid systems
 - high temperature nuclear + energy storage for process heat
 - Nuclear + Renewables (NuRenew)
 - Fusion-fission hybrid (Dr. W. Stacey)

Nuclear power plants - past/present/future

Georgia Tech

FER, University of Zagreb – February 10, 2014

I²S–LWR

Fukushima? Safety?

State-of-the-art: Safe enough?

- Gen. III+ Advanced Passively Safe Nuclear Power Plants
- Safety systems operate based on laws of nature (gravity, natural circulation), thus don't require external power, and much less likely to fail than active systems
- Is it safe enough?
- Can it be safer?

Personal perspective:

- ALWRs (and Gen-II LWRs) extremely safe for all planned/foreseen events
- Inherent safety may (significantly?) improve response to unforeseen events (Fukushima-type scenario)

Small power reactors

- Large surface-to-power ratio
- Decay heat removal by conduction

Integral primary circuit configuration

- All primary circuit components within the reactor vessel
- Eliminates large external piping
- Since it does not exist, cannot break it
- No possibility for LB-LOCA

SMR Small Modular Reactors

SMRs – Summary and Personal Perspective

- Attractive safety (in most cases promoted through integral configuration)
- Emphasis on modularity and transportability
- Power limited to a few hundred MWe
- Economic competitiveness "yet to be demonstrated"
 - "Economy of scale" impact overused as counter-argument (neglects that SMRs may use design features not accessible to large reactor)
 - Licensing cost is a real issue (but it may be overcome)

Personal perspective

- SMRs can be economical
- SMRs offer a viable option for certain markets
- One size does not fit all; certain markets favor/prefer larger units

Integral Inherently Safe Light Water Reactor (I²S-LWR)

DOE NEUP IRP

- U.S. DOE U.S. Department of Energy
- NEUP Nuclear Engineering University Programs
- IRP Integrated Research Project
- Only one Integrated Research Project awarded each year for a new reactor concept

DOE NEUP IRP:

Integral Inherently Safe Light Water Reactor (I²S-LWR) Concept

IRP – DOE's flagship research program in nuclear engineering for universities (only 1 to 3 awarded annually)

FY13 IRP solicitation requirements:

- Large PWR for US market economics
- Inherent safety beyond Gen-III+

Multi-institutional, multi-disciplinary team:

Lead: Georgia Tech

- B. Petrovic (PI), NRE/ME/MSE faculty Ten partnering organizations:
- U. of Michigan, U. of Tennessee, Virginia Tech, U. of Idaho, Morehouse
- National Lab: INL

Georgia Tech

- Industry: Westinghouse
- Utility: Southern Nuclear
- International: Politecnico di Milano, Italy;
 U. of Cambridge, UK
- Pending: University of Zagreb, Florida Institute of Technology

	Team Members	Co-Pls/Co-ls
Lead	Georgia Tech (GT)	B. Petrovic (PI) F. Rahnema (Co-PI) C. Deo, S. Garimella, P. Singh, G. Sjoden (Co-Is)
	University of Idaho (U-Id)	I. Charit (Co-PI)
Acada	University of Michigan (U-Mich)	A. Manera (Co-PI) T. Downar, J. Lee (Co-Is)
Acade-	Morehouse College (MC)	L. Muldrow (Co-PI)
ma	University of Tennessee (UTK)	B. Upadhyaya, W. Hines (Co-Pls)
	Virginia Tech (VT)	A. Haghighat (Co-PI), Y. Liu (Co-I)
Industry	Westinghouse Electric Company (WEC)	P. Ferroni (Co-PI) F. Franceschini, M. Memmott (Co-Is)
	Southern Nuclear (SNOC)	R. Cocherell (Co-PI)
Nat'l Lab	Idaho National Laboratory (INL)	A. Ougouag (Co-PI), G. Griffith (Co-I)
le til	Politecnico di Milano, Milan, Italy (PoliMi)	M. Ricotti (Co-PI)
	University of Cambridge, Cambridge, UK (U-Cambridge)	G. Parks (Co-PI)
Consultant		H. Garkisch
		cambridge - Georgia Tech - INL - Moc

I²S-LWR concept – Top level requirements

	Requirement	Target	Comment	
APPLICATION-DRIVEN REQUIREMENTS				
Power	>910 MWe	1,000 MWe	For markets preferring large plants	
Electricity production efficiency	>32%	35%	Competitiveness; reduced reject heat	
Design lifetime	60 years	100 years	Competitiveness; economics, sustainability	
Reactor pressure vessel	Same size as or smaller than current large PWRs		Manufacturability	
FUEL-RELATED REQUIREMENTS				
Fuel/cladding system	Enhanced accident tolerance*		Post-Fukushima considerations	
Fuel enrichment	Viable reloading with <5% enriched fuel	Improved fuel cycle with 5-8% enriched fuel	Option to use existing infrastructure for <5% enrichment	
Refueling	Multi-batch, refueling interval 12 months or longer	Options for 12-18-24 months refueling	Offer longer cycles when required by utilities	
SAFETY AND SECURITY				
Security, safeguards and proliferation	As in current LWRs or better			
resistance				
Safety indicators	CDF <3x10 ⁻⁷	CDF <1x10 ⁻⁷	Improve safety indicators relative to current Gen-III+ passive	
	LERF <3x10 ⁻⁸	LERF <1x10 ⁻⁸	plants	
Safety philosophy/systems	Inherent safety features		Eliminate accident initiators Eliminated need for offsite power	
	Full passive safety		in accidents	
	High level of passivity			
Grace period	At least 1-week	Indefinite for high percentage of considered scenarios	Resistance to LOOP and Fukushima-type scenarios	
Decay heat removal	Passive system with air as the ultimate heat sink		Resistance to LOOP and Fukushima-type scenarios	
Seismic design	Single compact building design	Seismic isolators	Allows siting at many locations	
Other natural events	Robust design		Address unforeseen events	
Monitoring	Enhanced, in normal and off-normal conditions		Improve normal operation; Address unforeseen events	
Spent fuel pool safety	Monitoring		Address Fukushima issues with SFP	
	Passive cooling			
Used nuclear fuel management	On-site, for the life of the plant		Remove reliance on repository availability at certain date	
DEPLOYMENT REQUIREMENTS				
Economics	Competitive with current LWRs			
Deployment	Near-term: 5% enriched fuel	Long-term option: up to 8% enriched silicide	Path to accelerated deployment	
	Option: use of oxide fuel	fuel		
Operational flexibility	2-batch and 3-batch,	5% and 8%	Diverse market needs	
	≥12-month cycle	12-18-24 months cycle		
Operational flexibility		Load follow with MSHIM	Reduced effluents (environmental)	
D&D	Easily returned to green site		Sustainability and public acceptance	

I²S-LWR Concept Overview

VG 24

12**S_I** WI

I²S-LWR approach to advanced, safe and economical nuclear power plant (extending SMR safety concept to large plants)

I²S-LWR concept - design objectives – what and how?

- Economics
 - Large (1 GWe-class)
 - » Compact core
 - » Compact integral HX
- Inherent safety features
 - LWR of integral design
- Fukushima concerns and lessons learnt
 - Indefinite passive decay heat removal
 - » Natural circulation
 - » Rejection to ambient air
- Fuel with enhanced accident tolerance
 - Silicide or nitride (high conductivity)
 - Advanced steel cladding (reduced oxidation at high temperatures)
- Enhanced seismic resistance
 - Seismic isolators

Compared to current PWRs:

- Integral configuration \rightarrow compact core
- Compact core \rightarrow higher power density core
- Yet, aiming at more accident tolerant fuel
- Requires novel fuel/clad design → require major testing and licensing efforts
- Primary HX inside the vessel
- SMR power in such configuration limited to a few hundred MWe
- Requires novel design of several key components
 - Primary HX

- ...

I²S-LWR approach to advanced, safe and economical nuclear power plant (extending SMR safety concept to large plants)

Key enabling technologies

Technologies developed for SMRs:

- Integral layout
- Integral primary components

I2S-LWR specific, novel technologies:

- High power density fuel/clad system (silicide fuel)
- High power density (micro-channel type) primary HX mC-PHX)
- Steam Generation System (mC-PXH + Flashing Drum)

Additional design features/challenges (a.k.a. the devil is in the "details")

- Reactor pressure vessel size
- High power density core (flow, vibrations, ...)
- Feasibility of compact HX for nuclear application and this power level (likely feasible, but is it practical/economical?)
- Licensing of a new fuel form/design
- Demonstration of the novel decay heat removal concept
- Integrating/harmonizing all components and systems

Enabling Technologies

Key enabling technologies

Technologies developed for SMRs

- Integral layout
- Integral primary components

I²S-LWR specific

- High power density fuel/clad system
- High power density primary HX
- Innovative steam generation system (SGG)

Rationale and selected options for fuel/cladding materials and geometry configuration

- Fuel
 - High-conductivity fuel
 - High HM load
- Cladding
 - Reduced oxidation rate
- Primary choice: Silicide (U₃Si₂ + advanced FeCrAI ODS)

Fuel Pellet Materials

- Higher U loading of U₃Si₂ vs. UO₂ enables acceptable cycle length at higher specific power and improves fuel management
- Better thermal conductivity lowers T and stored fuel energy
- Swelling = ?

Fuel	U ₃ Si ₂	UO ₂		
Theoretical density (g/cm ³)	12.2	10.96		
HM Theoretical density (g/cm ³)	11.3	9.66		
Thermal conductivity	9-20	5-2		
(unirradiated) (W/m K)	(300-1200°C)	(300-2000°C)		
Specific heat I/ka K	230-320	280-440		
Opeome near orky it	(300-1200°C)	(300-2000°C)		
Melting point °C	1665	2840		

2**S_I M**

Innovative steam generation system (SGG)

- Integral compact primary HX
 - Microchannel HX
 - High power density
- Combined with external steam drum

FER, University of Zagreb – February 10, 2014

I2S-LWR Layout

I²S-LWR Reactor Layout Integral Configuration

Integral configuration:

- Primary coolant circulates within RPV only
- All primary circuit components (except main pumps) located within the RPV
- 4 SGG subsystems (2 paired modules each): Primary heat exchangers (inside RPV) and flashing drums (outside RPV, inside containment)
- 4 full passive DHRS

Georgia Tech

I²S-LWR Reactor Layout Integral Configuration

FER, University of Zagreb – February 10, 2014

VG 37

I²S–LWR

Examples of a Student Senior Design Project: I²S-LWR Integral vessel layout, 3D CAD model

Devised layout, developed 3D CAD model, printed in 1:30 scale (80 cm tall)

Core layout and fuel assembly design

- 121 assemblies core configuration, steel radial reflector
- 12 ft active fuel height
- Similar to 2-loop cores but with ~40% higher power rating
- 19x19 assembly, 0.360" fuel rod OD, p/d=1.325

Lattice type	19×19, square	
Fuel type	U_3Si_2	
Cladding material	Advanced SS	
Fuel rods per assembly	336	
Fuel rod outer diameter (mm)	9.144	
Cladding thickness (mm)	0.406	
Pellet-clad gap width (mm)	0.152	
Pellet outer diameter (mm)	8.026	
Pellet inner void diameter (mm)	2.540	
Fuel rod pitch (mm)	12.106	
Assembly pitch (mm)	231	

Scoping study on fuel assembly level

- UO₂ (17x17) or U₃Si₂ (19x19) fuels
- SS and Zirc-4 Clad
- Evaluated Fuel Cycle Impact on selections
- Included soluble boron and IFBA coatings
- Tentative core design:
 - 19x19 assembly with U_3Si_2 fuel
 - 2850 MWth

Geometry Parameter	Value
Rod Diameter [cm]	0.9144
Inner Clad Radius [cm]	0.41656
Fuel Radius [cm]	0.40132
Pitch:Diameter Ratio	1.323
Assembly Pitch [cm]	231
Hydraulic-Diameter	1.124
[cm]	

...also 5-8% enrichment analyzed: longer cycle (>2 years)

FER, University of Zagreb – February 10, 2014

12**S_I** WF

Fuel Management Schemes for I²S-LWR

- Full 3-D depletion/reshuffling analysis to equilibrium cycle
- 3-batch /40 Feed-> 3 irradiation cycles before discharge (better fuel use)
- 2-batch /60 Feed -> 2 irradiation cycles before discharge (longer cycle)
- Higher BU fuel assemblies on the periphery (VLLLP)

Georgia Tech

Fuel cycle

- Westinghouse evaluated a number of options:
 - » 17x17 and 19x19
 - » 5% and 8%
 - » 12-18-24 months refueling interval
- Viable options:
 - » up to 5% enriched, 12/18-month refueling
 - » up to 8% enriched, 12/18/24-month refueling
- FCC
 - Seems within acceptable range

Fuel/cladding system Economics justification of I²S-LWR

New fuel/clad system is enabling technology, aiming to:

- Enable high power density core
- Enable more compact NPP footprint
- Enhance safety

Resulting in economic advantages and disadvantages:

- Neutronics: FCC increased by 15-20%
- More compact NPP layout: capital cost reduced by ?%
- Inherent safety features: some safety systems potentially eliminated, capital cost reduced by ?%

Thus, the trade-off is:

- Reduced capital cost (front-loaded, main portion of COE)
- Increased subsequent FCC
 Georgia
 FER, University of Z

Safety goals and philosophy

MULTIPLE LINES OF DEFENSE

First line of defense – inherent safety features (eliminate/limit event initiators/precursors)

- Integral primary circuit eliminates occurrence of LBLOCA/IMLOCA and CR ejection
- Seismic insulator eliminate/limit the impact of seismic events
- Partial burying of containment and underground placement of SFP eliminate/limit external events

Second line of defense - prevention

 All safety systems are passive with a high degree of passivity and deterministically address DBAs (prevent core damage)

Third line of defense - mitigation

- Integral configuration with small penetrations limit loss of RPV inventory
- Fuel with enhanced accident tolerance extend grace period
- Passive DHRs extend grace period (potentially indefinitely)
- DPRA-guided design utilizes passive and active systems

Fourth line of defense - protection

Containment vessel cooling by air or other medium in natural circulation regime

Safety goals and philosophy

 As high level of passivity as possible

Degree of passivity:				
Elements of the passive system	А	в	С	D
Structures (Barriers, pressure proof)	Χ	Х	Χ	Χ
Working fluids		Х	Х	Х
Moving mechanical parts			Χ	Χ
Stored operating power				х
External activation signal				Χ

Categories of passive safety systems [IAEA, 1991]

- Eliminate accident initiators as far as achievable
- Limit loss of inventory during LOCAs

Georgia Tech

Safety Systems

- Passive DHRS (Decay Heat Removal System)
- PHX (mC-HX) as passive heat removal system
- HHIT (High Head Injection Tanks)
- Passive containment cooling

Passive Decay Heat Removal System

Goal: long term self-sustained decay heat removal capabilities with no need for intervention in case of an accident, including loss of external power

- Passive, natural circulation
- Ultimate heat sink ambient air
- Four units, sized for 3 of 4

Tech

Target: indefinite heat removal

Comparison to current large loop PWR

Similar:

- Core geometry as 2-loop PWR (121 fuel assemblies)
- Fuel assembly similar to 17x17 PWR fuel assembly
- Core internals and control rods
- Secondary and BOP
- Pumps

lech

Different

CORE:

- Higher power density (10-30% higher)
- Different fuel form (silicide, ...)
- Enrichment potentially increased (up to 8%)
- Different cladding materials (advanced DS steel)
- Potentially different fuel geometry
- [radial reflector]
- INTEGRAL PRIMARY CIRCUIT:
- Larger reactor vessel (RV)
- PHĚ (primary heat exchanger) inside RV
- CRDN inside RV
- PZR integrated in RV
- COMPONENTS/SYSTEMS:
- Compact PHE (micro-channel PHE)
- DHRS (decay heat removal system)
 - Natural circulation
 - Ambient air ultimate heat sink
- Seismic isolators

SAFETY:

Passive → inherent (features)

Summary

- New I²S-LWR concept aims to extend inherent safety features of SMRs to larger power level reactors
 - Large (~1,000 MWe) PWR
 - Integral configuration
 - Inherent safety features
 - Novel fuel design, components, etc.
- Multi-disciplinary, multi-organization project
- Great opportunity for students to participate in the cutting edge research with involvement of industry and national lab (Example: GT - senior design class, 45 students in 2013; ~30 expected in 2014) Significant leveraging of DOE funding
- Exciting project developing potentially the next generation of PWR

ACKNOWLEDGEMENTS

- The reported work includes represents contributions of I²S-LWR Team Members
- A portion of the preliminary scoping analysis was performed within the Georgia Tech Senior and Graduate Capstone Design Courses in Spring 2013.
- This research is being performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP).

Thank you for your attention!