



Centre of Research Excellence

for Advanced Cooperative Systems

## Integration of wind power plant in the smart transmission network

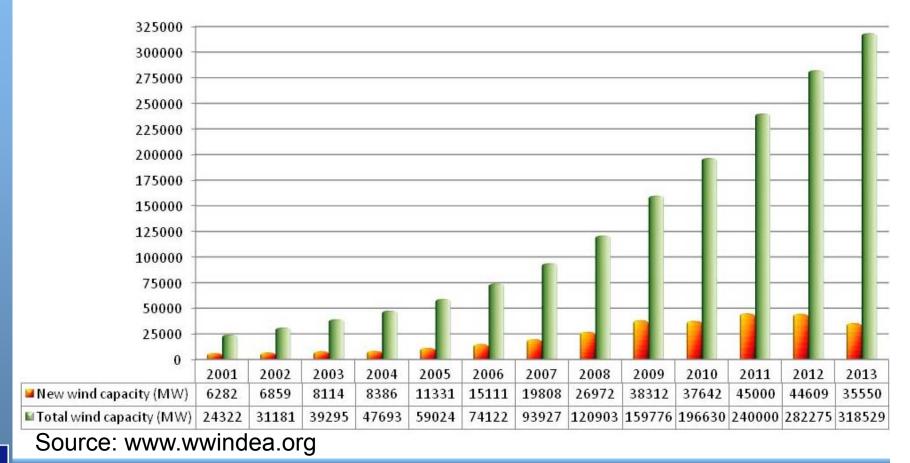
**Professor Igor Kuzle** 





#### Summary

- Global wind power penetration an overview
- Grid connection and tehnical requirements
- Operational issues
- Market integration
- Large-scale integration of wind power into power system
- Smart Grids





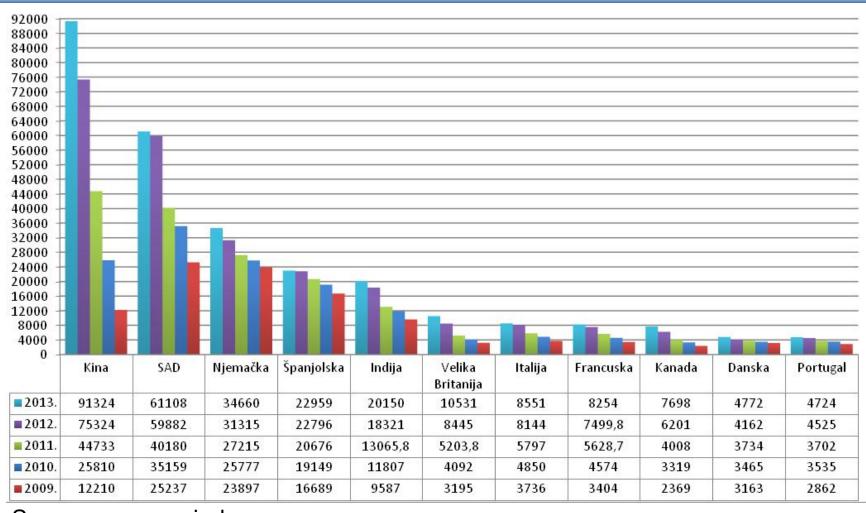



### World total installed capacity

The penetration level of wind power into the power system over the world has been increasing very fast.








Cooperative System

Advanced

Excellence

## Top 10 countries in using wind power



Source: www.wwindea.org







#### WPP in Croatia (339,45 MW)

#### **Transmission grid**

- Bubrig, Crni Vrh i Velika Glava (43 MW)
- Jelinak (30 MW)
- Ponikve (34 MW)
- ST1-1 Voštane (20 MW)
- ST1-2 Kamensko (20 MW)
- Vrataruša (42 MW)
- ZD2 (18 MW)
- **ZD3 (18 MW)**
- Zelengrad Obrovac (42 MW)

**UKUPNO 267 MW** 

#### **Distribution grid**

- Crno Brdo (10 MW)
- Orlice (9,6 MW)
- Pometeno brdo (17,5 MW)
- Ravne (5,95 MW)
- Trtar Krtolin (11,2 MW)
- ZD4-1 (9,2 MW)
- ZD6-1 (9 MW)

**UKUPNO 72,45 MW** 





## Electric power system is changing









#### **Basic terms**

WIND ENERGY PENETRATION (%) =

Total amount of wind energy produced (annually) (TWh)

Gross annual electricity demand (TWh)

WIND POWER CAPACITY PENETRATION (%) =

Installed wind power capacity (MW)

Peak load (MW)

MAXIMUM SHARE OF WIND POWER (%) =

Maximum wind power generated (MW)

Minimum load (MW) + power exchange capacity (MW)







#### Summary

- Global wind power penetration an overview
- Grid connection and tehnical requirements
- Operational issues
- Market integration
- Large-scale integration of wind power into power system
- Smart Grids





#### Wind Grid Codes

- Tehnical Requirements for Wind Power Plants regarding:
  - Connection
  - Operation
- Variety of requirements between electricity systems
- Pan-european grid codes unification





#### Grid connection aspects

- Type of grid:
  - Transmission
  - Distribution
- Type of connection
  - Connection to the node (radial)
  - Connection to the line (in-out)
- Covering of grid reinforcement costs
  - Deep method
  - Shallow method
  - Mixed method





### Type of grid

#### Transmission grid

- Highly meshed
- Higher installation capacity
- System impact: voltage support, frequency support, dynamical behaviour
- Local impact: Loading of lines, short-circuit level, energy quality, protection coordination

#### Distribution grid

- Radial
- Lower installation capacity
- System impact: low
- Local impact: Loading of lines, end voltage, energy quality, protection selectivity, short-circuit level, impact to the end customers







#### Covering of grid reinforcement costs

- Network development plans approved by Energy Regulator
- Shallow connection charging
  - minimizes the costs for producers
  - grid operators pay any costs for reinforcement
- Deep connection charging
  - higher costs on producers
  - producers pay for the equipment costs, plus all the cost of any network reinforcement necessary to connect their plant
- Mixed or shallower connection charging

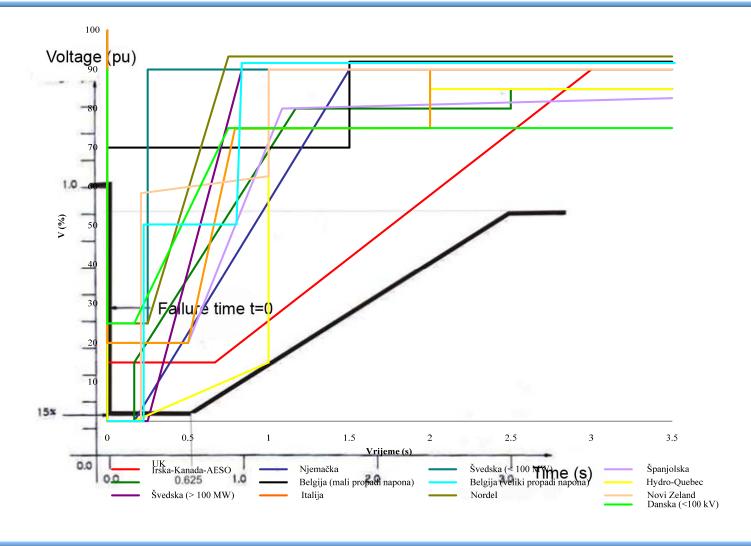




## Operational Requirements for Wind Power Plants

- Tolerance the range of conditions on the electricity system for which wind farms must continue to operate
- Control of voltage / reactive power
- Control of frequency / active power
- Protective devices
- Power quality







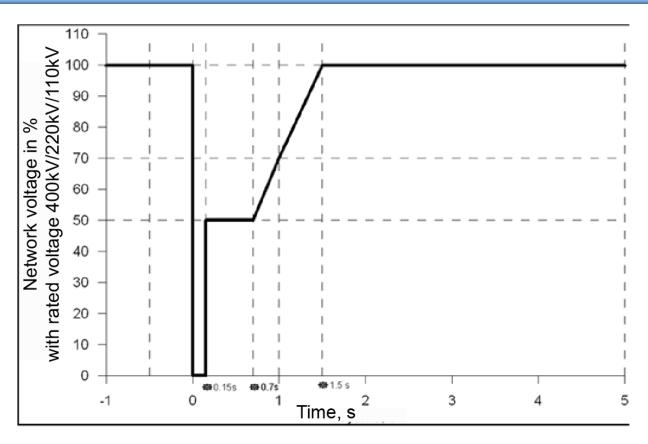



# for Advanced Cooperative Systems Research Excellence

### Fault ride through capability







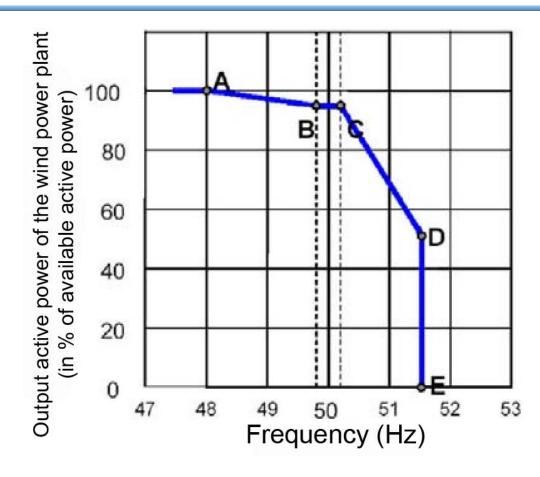

Systen

Cooperative

Advanced

### Control of voltage / reactive power




Allowed transmission grid voltage at the high-voltage side of the block-transformer





for Advanced Cooperative Syster

### Control of frequency / active power



Characteristic of the power response to the change of frequency







#### Summary

- Global wind power penetration an overview
- Grid connection and tehnical requirements
- Operational issues
- Market integration
- Large-scale integration of wind power into power system
- Smart Grids







## Impact of wind farms on power system operation

- Power system stability
  - Dynamic stability
  - Frequency control
  - Voltage control
- Power system operation and planning
  - Power system balancing
  - Power system control reserves (secondary/tertiary reserve)
  - Network congestion / Redispatching







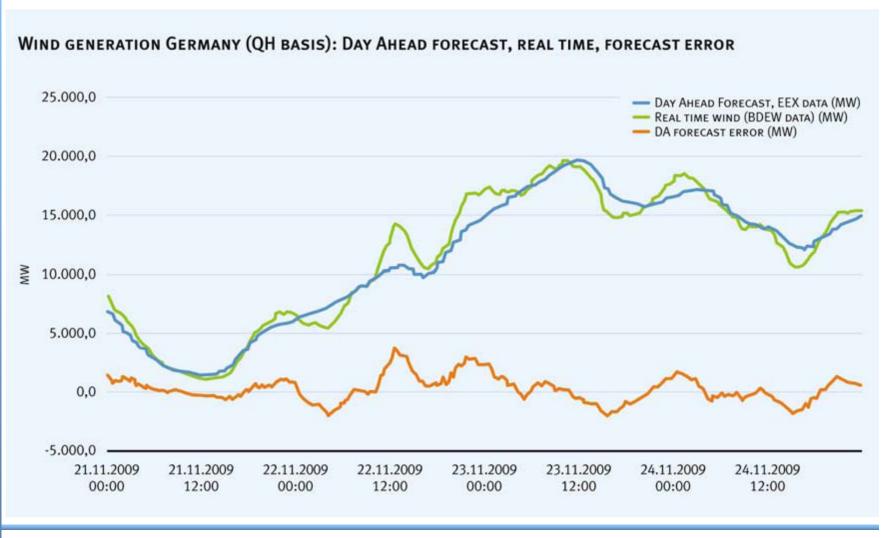
- Daily and hourly production scheduling
- Economic dispatch
- Usually hydro/thermal production mix
- Unit commitment tehnical and economical constraints
- Fitting of wind power into daily production schedules need for backing up of conventional power sources
- Large variations of wind power production need for extra balancing and control reserve







### Forecasting of wind power


- Based on numerical weather prediction model (NWPM)
- Wind intermittence requires complex prediction tools
- Shorter forecast times lead to better results
- Combination of different NWPMs recent trend







### Forecasting of wind power









#### Summary

- Global wind power penetration an overview
- Grid connection and tehnical requirements
- Operational issues
- Market integration
- Large-scale integration of wind power into power system
- Smart Grids







#### Wind power economics

- Investment costs (development, building, grid connection)
- Operation and maintenance costs
- Electricity production
- Balancing costs
- Turbine lifetime
- Discount rate







- Regulatory price-driven strategies
- Regulatory quantity-driven strategies
- Voluntary approaches
- Indirect strategies







#### Wind power economics

Source: C.W.Gellings (EPRI): "Impact on the Power System Economics", CIGRE Opening Panel Aug.2008.

| Study         | Penetration<br>Level (%) | Regulation  | Intra-Hour<br>Load<br>Following | Inter-Hour<br>Load<br>Following | Scheduling/<br>Unit<br>Commitment | Total       |
|---------------|--------------------------|-------------|---------------------------------|---------------------------------|-----------------------------------|-------------|
| NYSERDA-NYISO | 10                       |             |                                 |                                 |                                   |             |
| Xcel-280      | 0.3                      |             | 0.41                            | 1.44                            |                                   | 1.85        |
| Xcel-1500     | 15                       | 0.23        | 0.00                            | 4.37                            |                                   | 4.60        |
| AESO          | 13                       | 7.37        |                                 | 3.64                            |                                   | 11.01       |
| вра           | 11                       | 0.19        | 0.28                            |                                 | 1.00                              | 1.47        |
| SPS           | 20                       | 1.00 - 2.25 | 0.01                            |                                 |                                   | 1.01 – 2.26 |
| WE            | 14                       | 1.08        | 0.14                            |                                 | 1.61                              | 2.83        |
| GRE           | 16.6                     | 1.28        | 0.18                            |                                 | 3.08                              | 4.54        |
| Pacificorp    | 20                       |             |                                 | 2.50                            | 3.00                              | 5.50        |







#### Summary

- Global wind power penetration an overview
- Grid connection and tehnical requirements
- Operational issues
- Market integration
- Large-scale integration of wind power into power system
- Smart Grids





## Large-scale wind power integration requires

- Efficient, international power markets (day-ahead, Intraday and realtime markets)
- Strong national transmission grid and interconnections
- Domestic flexibility and automatic control for system balancing
- Same connection requirements for wind power as for any other power plant







#### Challenges

- Sudden drops or rises in electricity network injection
- WPP are not dispatchable
- Large offshore wind penetration could cause congestion in the network
- WPP plants often connected to the distribution grid, TSOs have a poor observability of the resulting power injections with no direct control over them







#### Challenges

- Increased demand for capacity reserves and ancillary services
- New guidelines for overhead lines and cables may substantially increase network tariffs
- Increasing need for regional planning and coordinated investments
- Activating the local grids
- Possible introduction of negative spot prices







#### Summary

- Global wind power penetration an overview
- Grid connection and tehnical requirements
- Operational issues
- Market integration
- Large-scale integration of wind power into power system
- Smart Grids







## Smart grids – concept for largescale wind power integration

An intelligent or a smart grid integrates advanced sensing technologies, control methods and integrated communications into the current electricity grid.





## Difference Between a Normal Grid and a Smart Grid

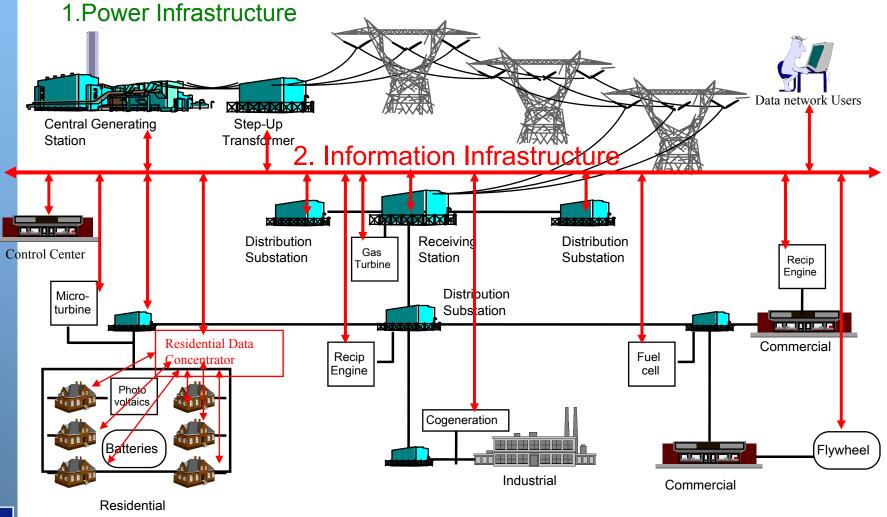






**Smart Phone** 






Cooperative System Excellence

Advanced

Research

### **Electric Power & Communication** Infrastructures





Source: EPRI





#### Trends in transmission system

- Increasing of transmission capabilities (new technologies and materials)
- Electric power system condition monitoring (WAMS)
  - Secondary equipment (servers, hubs, switches, routers)
  - Intelligent Electronic Devices (Digital Relays, Communication Gateways, Merging Units, Sensors) – IEC 61850
  - Continuously staff education (secondary equipment life time is 14 years, primary equipment is 40 years)



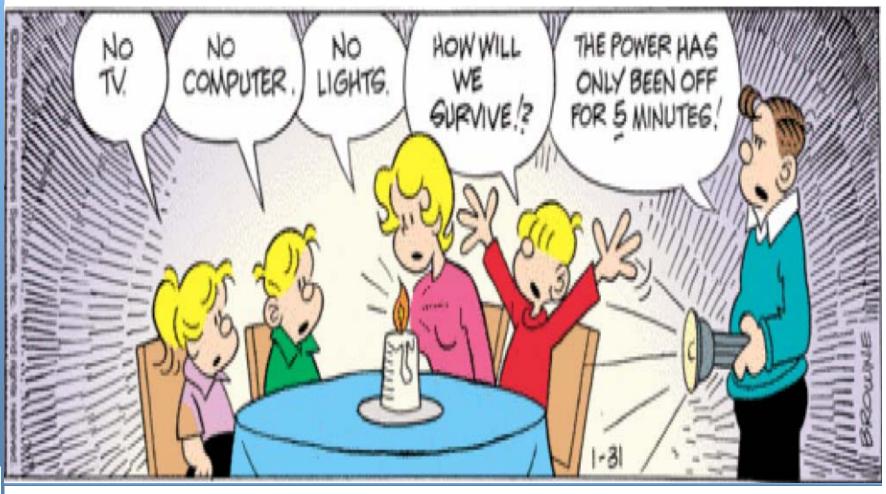




#### Trends in transmission system

- Long distance electricity transmission (HVDC)
- Control of power flows (FACTS)
- Electricity storage
- Reduction of equipment construction and life time costs
- Enlarge ecological requirements (noise reduction)








Centre of Research Excellence

for Advanced Cooperative Systems

### Thank you for attention!



