
ROPGuard: Runtime Prevention of

Return-Oriented Programming Attacks

Ivan Fratrić
University of Zagreb

Faculty of Electrical Engineering and Computing

Zagreb, 24.09.2012

2

Overview

 Introduction

 What is a memory corruption vulnerability?

 Buffer overflow example

 Introduction to return-oriented programming (ROP)

 Related work

 ROPGuard

 Main ideas

 Selected Implementation details

 Evaluation

 Conclusion and ideas for future work

3

Introduction

 Memory corruption vulnerability
 contents of a memory location are unintentionally modified due to programming

errors

 In many cases memory corruption vulnerabilities can lead to arbitrary code
execution

4

5

Example: Buffer overflow on stack

Local variables

Frame pointer

Return address

Function arguments

Local variables

Frame pointer

Return address

Stack

growth

...

6

Example: Buffer overflow on stack

char buffer[20]

Frame pointer

Return address

Function arguments

Local variables

Frame pointer

Return address

Stack

growth

...

frame of

main()

frame of

another

function

7

Example: Buffer overflow on stack

char buffer[20]

Frame pointer

Return address

Function arguments

Local variables

Frame pointer

Return address

Stack

growth

...

When main() returns,

the attacker gains

control over control

flow (EIP)

frame of

main()

frame of

another

function

8

Example: Buffer overflow on stack

9

10

Memory corruption vulnerabilities

 Many additional details about stack buffer overflows
 Stack cookies, SEH overwrite, SafeSEH, SEHOP

 Many other memory corruption vulnerabilities
 Heap overflow

 Integer overflow

 Use-after-free

 Double free

 Format string vulnerabilities

 Inproper bound checks

 Inproper loop conditions

 Etc.

 In common: Attacker gains control of EIP and can execute
arbitrary code

11

Data Execution Prevention (DEP)

 Hardware protection against exploitation

 A special flag (NX bit) indicates executable memory

regions

 Executable modules loaded in memory (.exe, .dll, etc.) are

executable

 Stack and heap are NOT executable

 Can be made executable by calling special function i.e.

VirtualProtect()

 Introduced on Linux in kernel 2.6.8, on Windows in

Windows XP Service Pack 2

12

Return-oriented programming

 Generalization of return-to-libc and similar

attacks

 Use small pieces of existing executable code to

perform (complex) actions specified by the

attacker

 “small pieces of existing executable code” are called

gadgets

13

14

Return-oriented programming

 Gadget consists of two parts:

 Instruction(s) that perform something
useful

 A part that transfers the code execution
to the next gadget

 RETN instruction

 Can be used to transfer execution to
the next gadget if the attacker controls
the stack

15

Return-oriented programming

 Simple example:

 Attacker wants to write value
0x00001337 to address 0x12345678

 Break it into simple operations so that
we can find appropriate gadgets in
executable modules

 Load 0x1337 into EAX

 Load 0x12345678 into ECX

 Do MOV [ECX],EAX

16

Return-oriented programming

 Simple example (cont.)
 Attacker wants to write value 0x00001337 to address

0x12345678

 See if we have appropriate gadgets in executable
code

 msvcr71.dll:

7C3503C8 8901 MOV DWORD PTR DS:[ECX],EAX

7C3503CA C3 RETN

7C3410C3 59 POP ECX

7C3410C4 C3 RETN

7C344CC1 58 POP EAX

7C344CC2 C3 RETN

17

Return-oriented programming

 Simple example (cont.)
 Attacker wants to write value 0x1337 to address 0x12345678

 Putting it all together

0x7C344CC1

0x00001337

0x7C3410C3

0x12345678

7C3503C8 MOV [ECX],EAX

7C3503CA RETN

7C3410C3 POP ECX

7C3410C4 RETN

7C344CC1 POP EAX

7C344CC2 RETN

0x7C3503C8

???????? RETN
EIP

ESP

EAX: ????????

ECX: ????????

0x????????

EAX: 00001337

ECX: ????????

EAX: 00001337

ECX: 12345678

18

Return-oriented programming

 Real-world example

19

Return-oriented programming

 Unintended instruction sequences
 Example:

 Other instructions can be used to connect gadgets
instead of RETN:
 Indirect jumps (jump-oriented programming, JOP)

 JMP EAX

 JMP [EAX]

 JMP [EAX + offset]

 Indirect calls

7C346C09 0F58C3 ADDPS XMM0,XMM3

7C346C0A 58 POP EAX

7C346C0B C3 RETN

20

The unexpected twist

ROP is Turing-complete

(Shacham, 2007)

No! That's

not true!

That's

impossible!

21

Mitigations (related work)

 Address Space Layout Randomization (ASLR)
 Randomizes base address of

 Executable modules

 Stack

 Heap

 etc.

 Can be bypassed by
 Using/loading a module that does not support ASLR

 Using a secondary vulnerability to perform memory
disclosure

 Using the same memory corruption vulnerability to perform
both memory disclosure and code execution
 Example: Memory disclosure technique for Internet Explorer

http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-
for.html

http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html

22

Mitigations (related work)

 Solutions based on dynammic binray instrumentation

 ROPdefender (Davi et al., 2011)
 “Shadow stack” approach

 CALL-RETN relations (ROP: RETN without appropriate
CALL)

 On each CALL, the return address is placed on a shadow
stack along with the “real” stack

 On each RETN, we check if the address on top of the stack
is the same as the address on top of the shadow stack

 Drawbacks
 Dynamic instrumentation introduces overhead of 2x

 Protects only against RETN-based gadgets

23

Mitigations (related work)

 Compiler-level approaches

 G-Free (Onarlioglu et al., 2009)

 Removes all unintended gadgets

 “Encrypts” return addresses in function prologue and

“decrypts” before the function ends

 Adds stack cookie to all functions with indirect jumps/calls.

The cookie is checked before the jump/call is made

 Comprehensive solution, but:

 Requires knowing the source code

 Needs to be applied to all modules in order to be effective

24

Mitigations (related work)

 Static binary rewriting

 In-Place Code Randomization (Pappas et al.,
2012)

 Changes the order of instructions

 Replaces instructions with ecquivalent ones

 Drawbacks

 Relies on automated disassembly

 Not an exact science!

 Code vs. data

 Indirect call/jump targets

25

ROPGuard: main idea

 Requirements:

 Prototype must be fully functioning and work on Windows

 Prototype must have low overhead meaning CPU and
memory cost of no more than 5%

 Prototype must not have any application compatibility or
usability regressions

 Can we avoid instrumentation/recompiling/rewriting
by using the information already present in the process?

 Design practical runtime checks that can be applied at
runtime

 When to perform the checks?

26

ROPGuard: main idea

 In order to leverage the attack, the attacker will

need to call some functions (critical functions) to

escape the constraints of ROP or current

process

 VirtualProtect, VirtualAlloc, LoadLibrary – make

memory executable

 CreateProcess

 OpenFile, WriteFile

 Etc.

27

ROPGuard: main idea

 Perform runtime checks when any critical function gets

called

 Attempt to answer questions

 How did the critical function get called?

 What will happen after the critical function executes?

 Is the current state of the system consistent with the normal

program execution or with the exploitattempt?

 Will executing the critical function violate the system’s

security?

 ROPGuard defines 6 runtime checks

28

ROPGuard: runtime checks(1)

 Check the stack pointer

 Assume: Attacker controls EIP and EAX, but not the

stack

 Stack pivoting

 Thread information block contains information about

the area of the memory that was designated for the

stack when the thread was created

29

ROPGuard: runtime checks(2)

 Look for the address of critical function above the top

of the stack

 Why?

 RETN:

EIP <- ESP

ESP <- ESP+4

 If we entered critical function via RETN, the address of

critical function must be just above the top of the stack

 ROPGuard “saves” a part of the stack upon entering

the critical function for examination

30

ROPGuard: runtime checks(3)

 Return address check

 For each critical function, verify that

 The return address is executable

 The instruction at the return address must be

preceded with a CALL instruction

 CALL instruction must lead back to the current

critical function

31

ROPGuard: runtime checks(4)

 Check the call stack

 Call stack must be valid

 How do we obtain call

stack?

 Before RETN

 Return address just below

the frame pointer!

Function arguments

Local variables

Frame pointer

Return address

Function arguments

Local variables

Frame pointer

Return address

Local variables

Frame pointer

Return address

EBP

mov esp,ebp;

pop ebp;

32

ROPGuard: runtime checks(4)

 Checking the call stack using frame pointers

frame_ptr = EBP;

for a specified number of frames

 check if frame_ptr points to the stack;

 return address <- [frame_ptr + 4];

 check if return address is executable;

 check if return address is preceded by call;

 frame_ptr = [frame_ptr];

33

ROPGuard: runtime checks(4)

 Checking the call stack using frame pointers

 Drawbacks

 Compilers are not required to use frame pointers!

 Sometimes a compiler will opt to omit frame pointer

in favor of using EBP as an additional general-

purpose register

 Frame pointers are generally not used for very short

functions

 Can be regulated by a compiler switch

34

ROPGuard: runtime checks(5)

 Can we walk the call stack without relying on frame
pointers?

 Can we determine the size of the stack frame by relying
only on the machine code?

 7C914EEE MOV AX,WORD PTR DS:[ESI]

7C914EF1 ADD ESP,0C

7C914EF4 CMP AX,WORD PTR DS:[ESI+2]

7C914EF8 JNB SHORT ntdll.7C914F01

7C914EFA SHR EDI,1

7C914EFC AND WORD PTR DS:[EBX+EDI*2],0

7C914F01 POP EBX

7C914F02 XOR EAX,EAX

7C914F04 POP EDI

7C914F05 POP ESI

7C914F07 RETN

EIP ->

ESP = ESP + 12 ->

ESP = ESP + 4 ->

ESP = ESP + 4 ->

ESP = ESP + 4 ->

RETURN ADDRESS = [ESP] ->

35

ROPGuard: runtime checks(5)

 ROPGuard simulates control flow from return
address of the critical function to the next return
instruction and keeps track of ESP along the
way

 Repeat from the return address

 Potential problems

 Stack frame determined dynamically

 Very rare in practice

 stdcall calling convention in combination with

 Indirect calls: CALL EAX; CALL [EAX] etc.

36

ROPGuard: runtime checks(5)

 ROPGuard brakes simulation when it reaches an instruction for
which it cannot resolve ESP

 Possible extension: simulate entire instruction set

 For the time being:

37

ROPGuard: runtime checks(6)

 Function-specific checks

 Do not allow program to make stack executable

 Do not allow program to load .dll-s from the

network

38

ROPGuard: Implementation details

 ROPGuard is implemented as a command line tool and a .dll

 Process is started in a suspended state

 dll injection via CreateRemoteThread()

 When the dll is loaded
 Hooks all critical function to perform appropriate checks using inline

hooking

 Function header is replaced with a direct jump to

39

ROPGuard: Implementation details

 Whenever a process creates another (child)
process, dll is injected into this process as well

 Cache information about executable module
(avoids repeated calls to VirtualQuery)

 ROPGuard can be used to protect processes
that are already running

 Extensive configuration options

 Define what checks to perform

 Define critical functions

40

ROPGuard: Evaluation

 Experiments on an example vulnerable application

41

ROPGuard: Evaluation

 A series of benchmarks was performed to

determine the computing overhead

 0 false positives while running the benchmarks

with the default configuration.

42

ROPGuard: Evaluation

 ROPGuard .dll is just 48kB in size.

 Additional memory overhead introduced by

copy-on-write memory page protection

43

ROPGuard: Evaluation

 ROPGuard won the second prize in Microsoft’s
BlueHat Prize contest at Black Hat USA 2012

44

ROPGuard: Evaluation

 ROPGuard has been integrated with Microsoft’s EMET tool
 Enhanced Mitigation Experience Toolkit

45

Conclusion

 Preventing ROP is a difficult problem

 Still largely unsolved!

 ROPGuard

 Can detect currently used ROP attacks

 Raises the bar for the attacker, more costly exploit
development

 Easy to deploy to protect existing programs

 Low CPU and memory overhead

 Source code and documentation available at

 http://code.google.com/p/ropguard/

http://code.google.com/p/ropguard/

46

Ideas for future contests

 Contest evaluation criteria
 40.00% - Impact (Strongly mitigate modern threats?)

 30.00% - Robustness (Easy to bypass?)

 30.00% - Practical and Functional

 Find ways to improve the reliability of binary rewriting
 Modify binary without breaking basic blocks

 Removal of unintended gadgets

 Binary modification relying on unintended instruction sequences

 Code randomization
 Resolve code-vs-data and basic blocks dilemma by running the

original binary

 On the first run, the code is modified, later only the modified code is
run

47

Other contest finalists

 KBouncer (V. Pappas, 2012)

 Recent Intel CPUs support Last Branch Recording

(LBR)

 Stores the last branches in a set of 16 model specific

registers (MSRs), can be read using rdmsr instruction

 Recordv only return instructions

 On every system call check if call instruction precedes the

return address

48

Other contest finalists

 /ROP (J. DeMott, 2012)

 Compiler-level solution

 Makes a list of valid return addresses

 Requires interrupt on each return instruction

 Check if the return address is in the whitelist

49

ROPGuard: runtime checks(5)

EIP = return address of critical function;

for a specified number of instructions

 decode instruction at [EIP];

 update EIP;

 if current instruction changes ESP

 update ESP;

 else if current instruction is RETN

 check if return address is executable;

 check if return address is preceded by call;

 else if current instruction changes ESP in an
unresolvable way

 break sumulation;

