ROPGuard: Runtime Prevention of
Return-Oriented Programming Attacks

[van Fratric
University of Zagreb
Faculty ot Electrical Engineering and Computing

Zagreb, 24.09.2012

Overview

Introduction
= What is a memory corruption vulnerability?

= Buffer overtlow example
Introduction to return-oriented programming (ROP)
Related work
ROPGuard

= Main ideas
m Selected Implementation details

m Ewvaluation

Conclusion and ideas for future work

Introduction

m Memory corruption vulnerability

= contents of a memory location are unintentionally modified due to programming
errors

CVE-2012-4969

oft Internet Explorer & through 9 allo

ulgl

ndroid

. a denial of ser. MEmory

corruptio Vi
Published:

CUSS Severity: HIGH)

®m [n many cases memory corruption vulnerabilities can lead to arbitrary code
execution

Example: Buffer overflow on stack

Hinclude <stdio.h>

Stack

woild maini() grovnh

TLocal variables

char buffer[20];

gets (buffer) ; Frame pointer

Return address

Function arguments

TLocal variables

Return address

Example: Buffer overflow on stack

Hinclude <stdio.h>

woid mainti)

char buffer[20];

gets |:]::|1_1ffE]‘_':| -

Stack
frame of char buffer[20] growth
main()

Return address
frame of

another T.ocal variables

Return address

function

Example: Buffer overflow on stack

Hinclude <stdio.h>

woid mainti)

char buffer[20];
getsibhuffer) ;

When main() returns,
the attacker gains

control over control
flow (EIP)

frame of
another T.ocal variables

function

Frarne pomter

Return address

Stack
rowth
frame of &
main()
Function arguments

Example: Buffer overtflow on stack

= F:\ifratric\ropguard\prezentacija\primjer\Release\primjer.exe

Addadadddadadddadcddaadadaada

OllyDbg - primjer.exe - [CPU - main thread] M=E3
ug Plugins Help

|44 X| b 1]| i %z 3z)i =) = L|EMT| WH

FF FF|FF FF FF FF
1B EF E

A

Kl
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

BRGRs
BTN

Memory corruption vulnerabilities

m F
m |
m
m [
m E
m]
m]
m i
In c

arbitEm e

| PlakForm:

Enable String Pooling

Enable Minim

Default
Multi-threaded DLL {/MD)
Default

Enable String Pooling

Enable read-o ing pooling For generating smaller compiled

te

10

Data Execution Prevention (DEP)

m Hardware protection against exploitation

m A special flag (NX bit) indicates executable memory
feg1ons
m Executable modules loaded in memory (.exe, .dll, etc.) are

executable

m Stack and heap are NOT executable

m Can be made executable by calling special function 1.e.
VirtualProtect()

®m Introduced on Linux in kernel 2.6.8, on Windows in
Windows XP Service Pack 2

11

Return-oriented programming

B Generalization of return-to-libc and similar
attacks

m Use small pieces of existing executable code to
perform (complex) actions specified by the
attacker

= “small pieces of existing executable code” are called

gadgets

12

Rlﬂ]ﬂon Efifed

IOII amrmm-: Of r.:utmlG
G AFtERS £70]) VEZaZINES,
ItU EE cURtG TN
fRERruRives frOM BEERR:
S=GMENtS

Return-oriented programming

m Gadget consists of two patts:

® Instruction(s) that perform something
useful

m A part that transfers the code execution
to the next gadget

m RETN instruction

m Can be used to transfer execution to
the next gadget 7f the attacker controls
the stack

14

Return-oriented programming

m Simple example:

m Attacker wants to write value

0x00001337 to address 0x12345678

m Break it into simple operations so that ‘

we can find appropriate gadgets in
executable modules

m [Load 0x1337 into EAX

m [Load 0x12345678 into ECX

= Do MOV [ECX],EAX

15

Return-oriented programming

Simple example (cont.)
m Attacker wants to write value 0x00001337 to address

0x12345678

See if we have appropriate gadgets in executable

code
msver/1.dll:

7C344CC1
71C344CC2

7C3410C3
7C3410C4

7C3503C8
7C3503CA

58 POP EAX
C3 RETN

59 POP ECX
C3 RETN

8901 MOV DWORD PTR DS: [ECX],EAX
C3 RETN

16

m Simple example (cont.)

m Putting it all together

EIP
—_—

PRAPRPRPRPRP RO RS

7C344CC1
7C344CC2

7C3410C3
7C3410C4

7C3503C8
7C3503CA

RETN

POP EAX

RETN

POP ECX

RETN

MOV
RETN

[ECX], EAX

m Attacker wants to write value Ox1337 to address 0x12345678

Return-oriented programming

5

EAX: 00001337

ECX: 12345678

| D) X
—_—

0x7C344CC1
0x00001337
0x7C3410C3
0x12345678

0x7C3503C8

Return-oriented programming

m Real-world example

svcer/1l.dl1]
N [msvecr71l.d11]
AY # INC EAX # RETN [msvcr71.dl11]

)y neg vill become 0)000040
RETN [msvcr71.dl1l]
RETN [msvcr71.dl1l]
ocation [msvcr7l.dll]

ect 0 [IAT msvcr71.d1l1]
PUSHAD nsver/71l.d11]
ptr to 'push esp # ret ' [msvcr71.dl1]

= osE sl e slE sE kR e sE sl G slE R kR G slE ek

Return-oriented programming

m Unintended instruction sequences
= HExample:

7C346C009 OF58C3 ADDPS XMMO, XMM3
7C346C0A 58 POP EAX
7C3460C0OB C3 RETN

m Other instructions can be used to connect gadgets
instead of RETIN:
= Indirect jumps (jump-oriented programming, JOP)
m JMP EAX
m JMP [EAX]
m JMP [EAX + offset]
m Indirect calls

19

The unexpected twist

— ‘ ROP is Turing-complete
LA 2 ia ! (Shacham, 2007) _

. e B
- S ...‘." '."- 1 | "*"Ci .
o ‘.\‘f =~ = - :5
- — R 3 e) p
~ AR _ T
' »r No! That's
- 4 y
- d ' not true!
- \ That's
. , impossible! |
\, a%
b 7 ‘ (
T\ |

Mitigations (related work)

m Address Space Layout Randomization (ASLR)

® Randomizes base address of
m Executable modules
m Stack
m Heap

B ctC.

m Can be bypassed by
s Using/loading a module that does not support ASLR

m Using a secondary vulnerability to perform memory
disclosure

= Using the same memory corruption vulnerability to perform
both memory disclosure and code execution
m HExample: Memory disclosure technique for Internet Explorer

http://ifsec.blogspot.com/2011/06/memoty-disclosure-technique-
for.html

21

http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html
http://ifsec.blogspot.com/2011/06/memory-disclosure-technique-for.html

Mitigations (related work)

m Solutions based on dynammic binray instrumentation

m ROPdefender (Davi et al., 2011)

= “Shadow stack” approach

m CALL-RETN relations (ROP: RETN without appropriate
CALL)

®= On each CALL, the return address is placed on a shadow
stack along with the “real” stack

= On each RETN, we check if the address on top of the stack
is the same as the address on top of the shadow stack

m Drawbacks

= Dynamic instrumentation introduces overhead of 2x
= Protects only against RETN-based gadgets

22

Mitigations (related work)

m Compiler-level approaches

m G-Free (Onarlioglu et al.; 2009)

= Removes all unintended gadgets

= “Encrypts” return addresses in function prologue and
“decrypts” before the function ends

m Adds stack cookie to all functions with indirect jumps/calls.
The cookie is checked before the jump/call is made

m Comprehensive solution, but:
= Requires knowing the source code

= Needs to be applied to all modules in order to be etfective

23

Mitigations (related work)

m Static binary rewriting

m [n-Place Code Randomization (Pappas et al.,
2012)

= Changes the order of instructions

® Replaces instructions with ecquivalent ones

m Drawbacks

m Relies on automated disassembly
m Not an exact science!
m Code vs. data

m Indirect call/jump targets

24

ROPGuard: main idea

B Requirements:
= Prototype must be fully functioning and work on Windows

= Prototype must have low overhead meaning CPU and
memory cost of no more than 5%

= Prototype must not have any application compatibility or
usability regressions

m Can we avoid instrumentation/recompiling/ rewriting
by using the information already present in the process?

m Design practical runtime checks that can be applied at
runtime

®m When to perform the checks?

25

DD X S S
2 ropsettings.txt - Notepad g@@

File Edit Faormat

crit
crit
crit

Crit : 5! ; : . . Kx;.ll
crit 1Function . tRt1C : 1
- :_ 1Funct1un f : ; :

IHTHPHE1A“=

nternalw:lz > tO

;LﬂadLThF
:LﬂﬂdLThF

ke

Crit TFunctian
Erit 1Fuﬂct1un
Crit ‘
crit

Crit
criticalFunction

| Etc

RSN N [(U N [[I R [U p— |
RSN N [(U N [[I R [U p— |

26

ROPGuard: main idea

m Perform runtime checks when any critical function gets

called

B Attempt to answer questions
= How did the critical function get called?
= What will happen after the critical function executes?

= [s the current state of the system consistent with the normal
program execution or with the exploitattempt?

= Will executing the critical function violate the system’s
security?

B ROPGuard defines 6 runtime checks

27

ROPGuard: runtime checks(1)

m Check the stack pointer

m Assume: Attacker controls EIP and EAX, but not the
stack

= Stack pivoting

B Thread information block contains information about
the area of the memory that was designated for the
stack when the thread was created

28

ROPGuard: runtime checks(2)

m [ook for the address of critical function above the top
of the stack

= Why?

m RETN:
EIP <- ESP
ESP <- ESP+4

m [f we entered critical function via RETN, the address of
critical function must be just above the top of the stack

B ROPGuard “saves’ a part of the stack upon entering
the critical function for examination

AS

ROPGuard: runtime checks(3)

m Return address check

m For each critical function, verity that
m The return address is executable

® The instruction at the return address must be
preceded with a CALL instruction

m CALL instruction must lead back to the current
critical function

30

ROPGuard: runtime checks(4)

EBP

Check the call stack

m Call stack must be valid

How do we obtain call
stack?

Before RETN

mov esp, ebp;
pop ebp;

Return address just below

the frame pointet!

T.ocal variables

Return address
Function arguments
T.ocal variables

Frame pointer

Return address
Function arguments
L.ocal variables

Frame pointer

Return address

I

I

31

ROPGuard: runtime checks(4)

m Checking the call stack using frame pointers

frame ptr = EBP;
for a specified number of frames
check 1f frame ptr points to the stack;
return address <- [frame ptr + 4];
check 1f return address 1s executable;
check 1f return address 1s preceded by call;

frame ptr = [frame ptr];

32

ROPGuard: runtime checks(4)

r

primjer Property Pages

Configuration: | ActivelRelease) | Platform: | Active(Wwin3z) Configuration Manager...]

+- Common Properties Cptimization Maximize Speed (/02)
= Configuration Properties Inline Function Expansion Default
General Enable Intrinsic Functions Yes (/01)
Debugging Favor Size of Speed Meither
= CfCH it Frame Poinkers M

General
Optimization
Preprocessar
Code Generation
Language
Precompiled Headers
Cukput Files
Browse Information
Advanced
Command Line

Linker

Manifest Tool

AML Document Generakar

Browse Information

Build Events

Cuskam Build Step

Enable Fiber-safe Cptimizations Ho
Whole Program Optimization Enable link-time code generation {fiEL)

Omit Frame Pointers
Suppresses frame poinkers, (i)

Ik, l [Zancel

ROPGuard: runtime checks(5)

m Can we walk the call stack without relying on frame

pointers?

m Can we determine the size of the stack frame by relying

only on the machine
EIP ->

ESP = ESP + 12 ->
ESP = ESP + 4 ->

ESP = ESP + 4 ->

ESP = ESP + 4 ->

RETURN ADDRESS = [ESP] ->

code?

JCO914EEE
7C914EF1
1C914EF4
JTC914EF8
JCO914EFA
JCO914EFC
7C914F01
7C914F02
7C914F04
7C914F05
7C914F07

MOV AX,WORD PTR DS: [ESI]
ADD ESP, 0C

CMP AX,WORD PTR DS: [ESI+2]
JNB SHORT ntdll.7C914F01
SHR EDI, 1

AND WORD PTR DS: [EBX+EDI*2],0
POP EBX

XOR EAX, EAX

POP EDI

POP ESI

RETN

34

ROPGuard: runtime checks(5)

B ROPGuard simulates control flow from return
address of the critical function to the next return
instruction and keeps track of ESP along the
way

m Repeat from the return address

m Potential problems

m Stack frame determined dynamically

m Very rare in practice
= stdcall calling convention in combination with
m Indirect calls; CALL EAX; CALL [EAX] etc.

35

ROPGuard: runtime checks(5)

B ROPGuard brakes simulation when it reaches an instruction for
which it cannot resolve ESP

m Possible extension: simulate entire instruction set
m For the time being:

cr/7l.dll]

AX # RETN [msver7l.dll]

o & otect (] [IAT msver/l.dl1]
PUSHAD # ADD AL,O # RETN CT 111]

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

ROPGuard: runtime checks(6)

m Function-specific checks
= Do not allow program to make stack executable

= Do not allow program to load .dll-s from the
network

37

ROPGuard: Implementation details

ROPGuard is implemented as a command line tool and a .dll
Process is started in a suspended state

dll injection via CreateRemoteThread()
When the dll is loaded

m Hooks all critical function to perform appropriate checks using inline

hooking

m Function header 1s replaced with a direct jump to

SUB ESP, PRESERVE STACK; //save part of the stack for le examination
PUSHAD; //save the state of all rPTiﬂTerz at the moment m' unction call
PUSH ESP; //pointer to the s er

PUSH ORIGINAL FUNTI HN _ADDRE

CALL RopCheck; //p '

ADD ESP

//resume normal func
[original function h

JMP ORIGINAL FUNTION n[J[PE“

38

ROPGuard: Implementation details

m Whenever a process creates another (child)
process, dll is injected into this process as well

m Cache information about executable module
(avolds repeated calls to VirtualQuery)

m ROPGuard can be used to protect processes
that are already running

m Hxtensive configuration options
® Detfine what checks to perform

m Define critical functions

39

ROPGuard: Evaluation

m Fxperiments on an example vulnerable application

Microszoft Windows HP [Uersion 5.1.268H]
Gy Copyright 1985-2801 Microsoft Corp.

C:sJDocuments and Settings“Ivan Fratricicd Fisifratricsropguardshin
C:sJDocuments and Settings~Ivan Fratwic>f:

F:wifratricropguardshin>ropguard.exe "vulnapp.exe vulnapp—input—rop.txt'

F:wifratricropguard-hin>aaaaaasaddiddddaddddddddddddddddddddddddaddddddadaddaaaa
Aaaadaaaanana=e?! # E£adliE4) BV SASIURAIES 04l L EADIEN @R 1Sad 1Qi7 LY
iE\ﬁifUﬁﬁ 1BRhcalcESRUddrAov $Hv esiBE ™~ 1o _{6~FxotY EmoL¥SE Bsii<WinEuiET Qmit YoEmw
1 H

ROPGuard

ukion normally

40

ROPGuard: Evaluation

m A series of benchmarks was performed to
determine the computing overhead

Benchmark name Benchmark | Score. not Protected. no cache Protected. with cache
type protected Overhead Overhead
PCMark Vantage System | '

NovaBench System

Peacekeeper Browser

0,50%

-0.07%
SunSpider Browser

3DMark06 Gaming -0.03%
SuperPI 16M CPU 403.0 s 7% 406.9 s 0.97%
Average overhead 0,48%

m O false positives while running the benchmarks
with the default configuration.

41

ROPGuard: Evaluation

® ROPGuard .dll 1s just 48kB 1n size.

m Additional memory overhead introduced by
COpy-On-write memotry page protection

42

ROPGuard: Evaluation

m ROPGuard won the second prize in Microsoft’s
BlueHat Prize contest at Black Hat USA 2012

ar &=)
Nl AT
Nl

43

ROPGuard: Evaluation

m ROPGuard has been integrated with Microsoft’s EMET tool

= Enhanced Mitigation Experience Toolkit

B e = e —— = A=t 5 sl)

2% Domrlosd EMET 35 Tech P @ . %

CnH

My Enhanced Mitigation Experience Toolkit v3.5 Tech
B¥ Preview

Quick links A tookit for deploying and configuring security mitigation technologies
& Overvie w
& System regquirements

Quick details

& Instructions

Date publshed:
Languaoge:

KB articles
Looking for support?
: ST

& tha Micr

e name

44

Conclusion

m Preventing ROP is a difficult problem
= Still largely unsolved!

B ROPGuard

® Can detect currently used ROP attacks

m Raises the bar for the attacker, more costly exploit
development

= Fasy to deploy to protect existing programs

® Low CPU and memory overhead

B Source code and documentation available at

http:/ /code.google.com/p/ropguard/

45

http://code.google.com/p/ropguard/

Ideas for future contests

m Contest evaluation criteria

= 40.00% - Impact (Strongly mitigate modern threats?)

= 30.00% - Robustness (Easy to bypass?)
m 30.00% - Practical and Functional

m [ind ways to improve the reliability of binary rewriting
= Modify binary without breaking basic blocks

m Removal of unintended gadgets
m Binary modification relying on unintended instruction sequences
m Code randomization

m Resolve code-vs-data and basic blocks dilemma by running the
original binary

m On the first run, the code is modified, later only the modified code is
run

46

Other contest finalists

m KBouncer (V. Pappas, 2012)

m Recent Intel CPUs support Last Branch Recording
(LBR)
= Stores the last branches in a set of 16 model specific
registers (MSRs), can be read using rdmsr instruction
m Recordv only return instructions

m On every system call check if call instruction precedes the
return address

47

Other contest finalists

m /ROP (J. DeMott, 2012)
= Compiler-level solution
m Makes a list of valid return addresses

® Requires interrupt on ecach return instruction

m Check if the return address is in the whitelist

48

ROPGuard: runtime checks(5)

EIP = return address of critical function;

for a specified number of instructions

decode instruction at [EIP];

update EIP;

1f current instruction changes ESP

update ESP;

else if current instruction
check 1f return address
check 1f return address

else 1if current instruction
unresolvable way

break sumulation;

is RETN
is executable;
1s preceded by call;

changes ESP 1in an

49

