

Zagreb Energy Congress 2017 December 13th – 16th

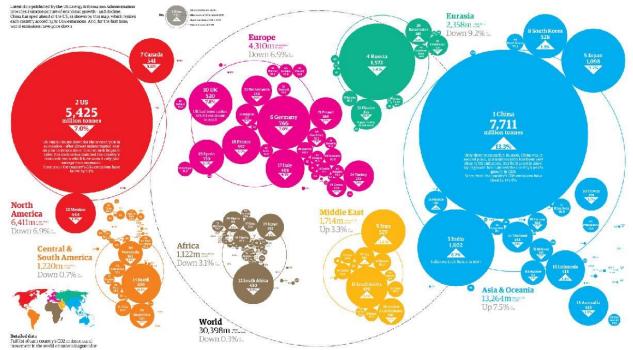


#### **Croatian Low Emission Development Strategy - Power System Perspective**



Doc.dr.sc. Ivan Rajšl ivan.rajsl@fer.hr

University of Zagreb Faculty of Electrical Engineering and Computing Department of Energy and Power Systems


Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



#### Some background...

http://www.lahistoriaconmapas.com/atlas/country-map158/kyoto-protocol-participation-map-2013.htm

#### An atlas of pollution: the world in carbon dioxide emissions



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



# **Kyoto Protocol**

- 1992. Rio, Brasil UN Framework Convention on Climate Change – EARTH SUMMIT
- CO2 emissions are affecting planet (global warming)
- Goals:
  - Taking care of ecosystems regarding climate change
  - Security of food production
  - Sustainable economic development
- Result: a document that should be amended in future



# **Kyoto Protocol**

- COP3: 1997., Kyoto, Japan representatives from 160 countries agreed to limit emissions of greenhouse gases
- Target: to reduce developed nation emissions to 5% below 1990 levels during 2008-2012
- Most countries need significant reductions (i.e. -18% reduction in BAU by 2008)
- Post Kyoto and low carbon development

#### FER

# Why LEDS?



https://www.armstrongeconomics.com/tag/global-warming/

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



#### Low carbon development

- Low carbon development becoming increasingly important
- The United Nations Framework Convention on Climate Change
   UNFCCC
- **COP21** in **Paris** a legal binding agreement on climate and to keep global warming below 2°C above pre-industrial levels
- Low Emission Development Strategies LEDS

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

#### What is LEDS?





http://www.iisd.org/story/iisd-and-the-sustainable-development-goals/

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



#### LEDS

- Highlights disadvantages and prioritizes activities for founding on the national level
- LEDS can be **integrated** and build on existing strategies
- Strategic plan:
  - promoting development pathway towards a low-carbon sustainable development
  - taking into account the socio-economic development priorities of the county



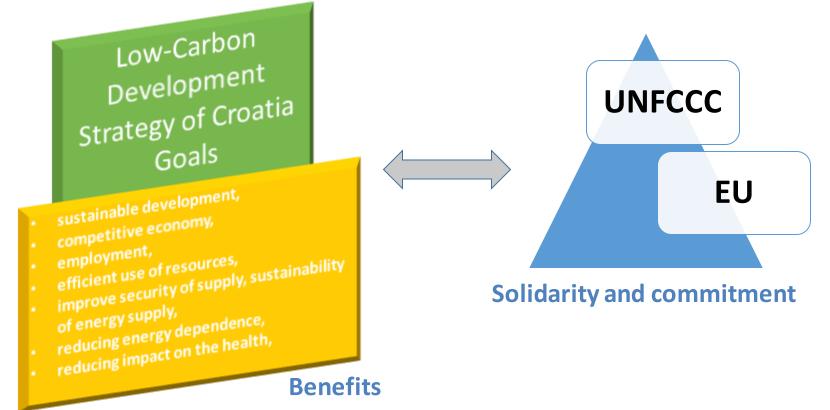
# LEDS development process

- Political support
- Important interested groups and **stakeholders**
- Institutional framework and cross-sectoral coordination body
- Collection and analysis of data
- Identification of:
  - greenhouse gas emission scenarios and projections
  - climate change mitigation policies and measures
- Climate change measures application and monitoring.

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



#### ...and what about Croatian LEDS?




#### REPUBLIKA HRVATSKA

#### MINISTARSTVO ZAŠTITE Okoliša i energetike

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

# The criteria and standards for determination of targets of Croatia



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku





#### **Croatian LEDS**

- Fundamental document in the field of climate change mitigation
- Economic, development and environmental aspects
- <u>Objective</u>: to achieve a competitive low carbon economy by 2050 in line with relevant guidelines
- Contains three scenarios:
  - NUR referent scenario
  - NU1-scenario of the gradual transition
  - NU2 scenario of the strong transition

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



#### **Croatian LEDS:**

Available technical measures

- Energy efficiency of residential and non-residential buildings
- Smart grids
- New CHP and central heating systems (CHS)
- Increase share of **RES**
- Alternative fuels for transport
- Electrical vehicles
- Afforestation
- .



#### **Croatian LEDS:**

Available non technical measures

- Implementing climate policy in **sectoral strategies**
- Establishing **central body** for coordination
- Necessary legal adjustments
- New educational curriculum
- ETS adjustments
- Efforts to encourage **behavior change**

• .



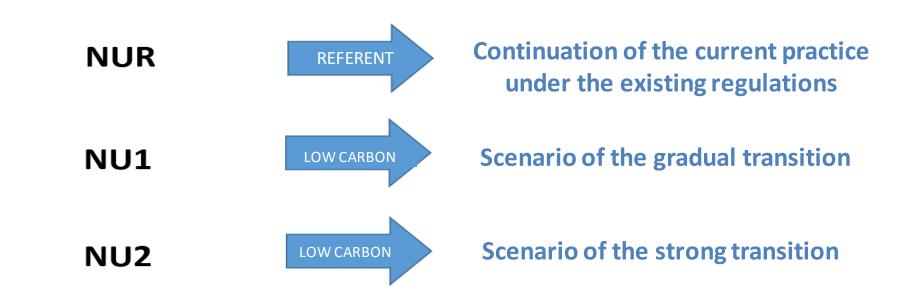
#### Power system options

- Increasing energy efficiency
- Increased use of **RES**
- Increased use of CHP
- Switching to fuels with lower GHG production rate
- Nuclear option
- CCS technologies
- Reduction of losses in transmission and distribution systems



### Croatian power system model

- Modelled in the "PLEXOS for Power Systems"
- Time horizon: until year 2070.
- Power plants (existing and expansion candidates)
- CCS technologies
- Electricity and heat **load** for each scenario
- Projections of future RES (especially wind and photovoltaic) capacity




## Croatian power system model cont'd

- Power plants **outages** and new **entries**
- Heat and steam demand:
  - Cogeneration power plants
  - Heat boilers
  - Heat storage tanks
- System reserve capacity margin
- Secondary reserve providers:
  - Thermal power plants (gas) and
  - Hydro power plants

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku





- NURa, NU1a, NU2a without electricity exchange after 2030 (without imports)
- NURb, NU1b, NU2b - with electricity exchange

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

**Scenarios** 



| Scenario |                                                                                         | NURa  | NU1a                         | NU2a                                                |                                                     |
|----------|-----------------------------------------------------------------------------------------|-------|------------------------------|-----------------------------------------------------|-----------------------------------------------------|
|          | Hydropower >10 MW                                                                       | 2020. | According to the plan of HEP | According to the plan of HEP                        | According to the plan of HEP                        |
|          |                                                                                         | 2030. | According to the plan of HEP | According to the plan of HEP+ 2 candidates for PHES | According to the plan of HEP+ 4 candidates for PHES |
|          |                                                                                         | 2050. | According to the plan of HEP | According to the plan of HEP+ 2 candidates for PHES | According to the plan of HEP+ 4 candidates for PHES |
|          | Hydropower <10 MW                                                                       | 2020. | 66                           | 66                                                  | 66                                                  |
|          |                                                                                         | 2030. | 100                          | 120                                                 | 140                                                 |
|          |                                                                                         | 2050. | 100                          | 140                                                 | 140                                                 |
|          | Solar power <100 kW (MW)                                                                | 2020. | 56                           | 200                                                 | 300                                                 |
|          |                                                                                         | 2030. | 250*                         | 700                                                 | 1300                                                |
|          |                                                                                         | 2050. | 250*+) and idates            | 700+candidates                                      | 1300+candidates                                     |
|          | Solar power >100 kW (MW)                                                                | 2020. | candidates                   | candidates                                          | candidates                                          |
| DEC      |                                                                                         | 2030. | candidates                   | candidates                                          | candidates                                          |
| RES      |                                                                                         | 2050. | candidates                   | candidates                                          | candidates                                          |
|          | Wind (MW)                                                                               | 2020. | 744                          | 744                                                 | 744                                                 |
|          |                                                                                         | 2030. | 744 + candidates             | 1200 + candidates                                   | 2000 + candidates                                   |
|          |                                                                                         | 2050. | 744 + candidates             | 1200 + candidates                                   | 2000 + candidates ti                                |
|          | Biomass power plants (1: 1 ratio of<br>electricity and heat for the CTS in CHP<br>mode) | 2020. | 120                          | 120                                                 | 120                                                 |
|          |                                                                                         | 2030. | 120 + candidates             | 150 (140 Plexos)                                    | 200 (170 Plexos)                                    |
|          |                                                                                         | 2050. | 120 + candidates             | 150 (140 Plexos)                                    | 280 (220 Plexos)                                    |
|          | Biogas (do not contribute to heat)                                                      | 2020. | 70                           | 70                                                  | 70                                                  |
|          |                                                                                         | 2030. | 70 + candidates              | 90                                                  | 100                                                 |
|          |                                                                                         | 2050. | 70 + candidates              | 90                                                  | 120                                                 |
|          | Geothermal power plants (do not contribute to heat                                      | 2020. | 30                           | 30                                                  | 30                                                  |
|          |                                                                                         | 2030. | 30                           | 35                                                  | 40                                                  |
|          |                                                                                         | 2050. | 30                           | 40                                                  | 50                                                  |

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



| Scenario                                                                                                               | NURa                                 | NU1a                                    | NU2a                                                                                       |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|
| The investment cost for the development<br>of the network due to new capacity RES **                                   | 75 EUR/kW                            | 75 EUR/kW                               | 75 EUR/kW                                                                                  |
| Projections for price reduction of<br>technologies for the renewable energy<br>sources, according to the reference *** | YES                                  | YES                                     | YES                                                                                        |
| Electricity Market                                                                                                     | The projection of hourly prices      | The projection of hourly prices         | The projection of hourly<br>prices                                                         |
| Exchange capacity (after deduction of<br>Krško NPP)                                                                    | 1,3 GWh/h                            | 1,3 GWh/h                               | 1,3 GWh/h                                                                                  |
| Price of CO2 units in the EU ETS (EUR/EUA                                                                              | 15 EUR/EUA, constantly               | According to EUREF 2016                 | According to EUREF 2016                                                                    |
| The limit for CO2 emissions                                                                                            | NO                                   | NO                                      | YES, -54% 2030. (1.725 kt<br>co2,) -85% 2050. (260 kt<br>co2) in compare to 1990<br>levels |
| Power and heat consumption                                                                                             | According to projections for the NUR | According to projections<br>for the NU1 | According to projections<br>for the NU2                                                    |

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



|                  | Scenario                                                         | NURa                                                                                       | NU1a                                                                                        | NU2a                                                                                          |
|------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                  | Price of fossil fuels                                            | According to EUREF 2016                                                                    | According to EUREF 2016                                                                     | According to EUREF 2016                                                                       |
|                  | Flexible demand                                                  | Heat storage, simple adjustment of the curve of charging electric vehicles                 | Heat storage, simple adjustment of the curve of charging electric vehicles                  | Heat storage, simple adjustment of the curve of charging electric vehicles                    |
| $\left( \right)$ | Net imports of<br>electricity                                    | 30% of the net consumption by 2020, linear decrease to 0 from 2030                         | 30% of the net consumption by 2020, linear decrease to 0 from 2030                          | 30% of the net consumption by 2020, linear decrease to 0 from 2030                            |
|                  | Reserve                                                          | As until now                                                                               | As until now                                                                                | As until now                                                                                  |
| × .              | The annual limit for the<br>construction of new RES<br>(MW/year) | 3*100 for Wind,<br>for SE 50 MW by 2030<br>100 MW by 2050<br>The ratio integrated:high 1:2 | 3*150 for Wind,<br>for SE 100 MW by 2030<br>200 MW by 2050<br>The ratio integrated:high 1:2 | 3*200 for Wind,<br>for SE 150 MW by 2030<br>300 MW by 2050<br>The ratio integrated:high 1:2:2 |

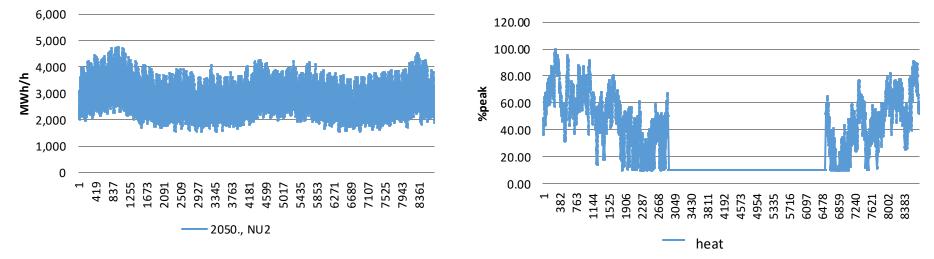
Candidates - Construction depends on profitability in the simulation of market without incentives

assessment of market development on the principle of net metering

\*\* Douring optimization it is accounted as addition to the investment cost of the new RES, except the small solar systems <100kW for their own consumption, source RoadMap 2050 EWIS, according to HOPS (Croatian Transmission System Operator) estimates

\*\*\* The JRC-EU-TIMES model Assessing the long-term role of the SET Plan Energy technologies, JRC, 2013., COST AND PERFORMANCE DATA FOR POWER GENERATION TECHNOLOGIES Prepared for the National Renewable Energy Laboratory, Black and Veatch, 2012., PV LCOE in Europe 2015-2050 (Vartiainen, Masson & Breyer, 31st EU PVSEC, 2015), Data from the Danish Energy Agency and Energinet.dk, 2014

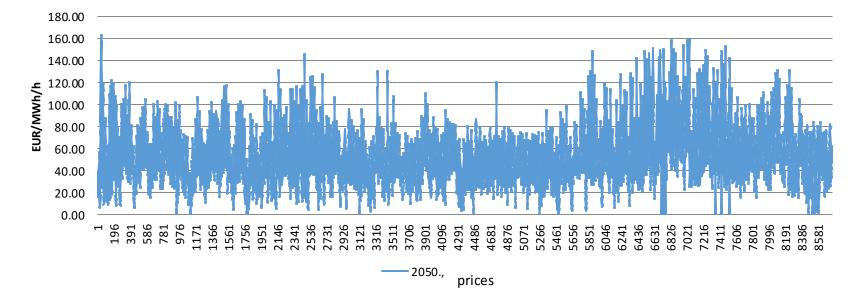
\*\*\*\* selection on the basis of prospective solutions according to information from HEP


Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

FER

- Other scenarios:
  - NURb, NU1b, NU2b
    - enable imports to 30% of the net consumption or 5 TWh/year, reserve 0% above the maximum consumption
  - NURa CO2
    - as NURa, but with the increase of prices of CO2 according to the EU REF 2016
  - NU1b\_plin
    - as NU1, but with lower gas price for 30%
  - NU2a\_260
    - stricter limit for the CO2 emissions in NU2a scenario (-93% emissions by 1990)
  - NU2a\_EV
    - limit for the CO2 emissions as NU2a scenario (-85% emissions by 1990) + advanced (wise) use of batteries in electric vehicles

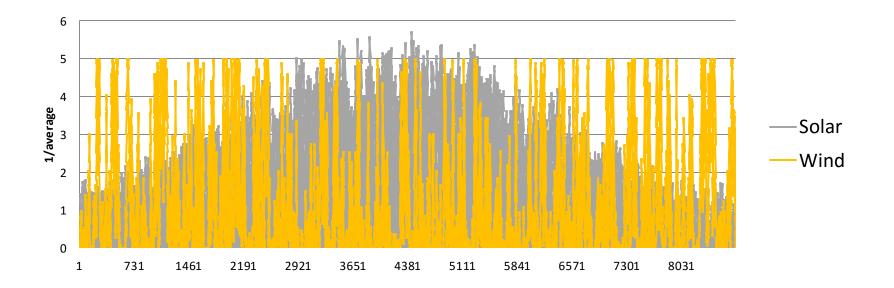
FER


• Hourly projections of consumption of electricity and heat



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

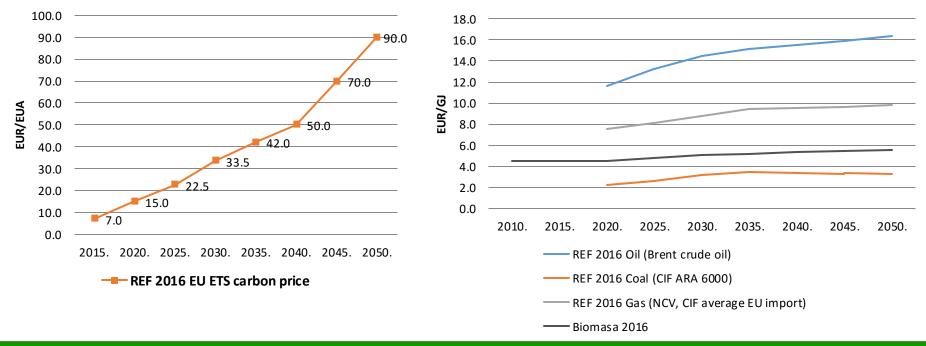
FER


• Hourly projections of electricity prices on the market



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku




• Hourly projections of electricity produced from solar and wind



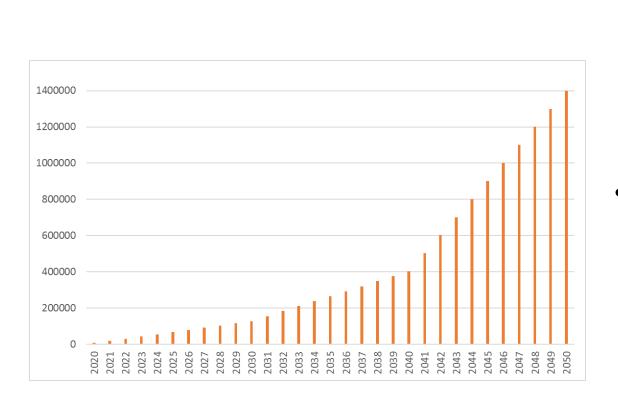
Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



• The reference price of energy sources and CO2



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku




#### EV modeling - Covered Issues

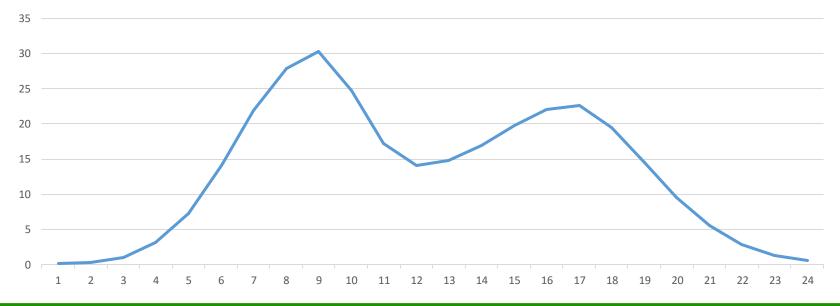
- Number of EVs
- Load profile
- Batery capacity and charge power
- Avalilable capacity for V2G
- Additional flexibility provided by EVs examples

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

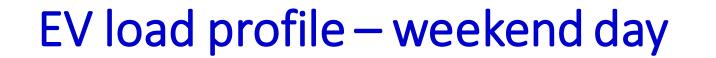
#### **Predicted number of EVs**



 Target: 1,4 million by 2050.

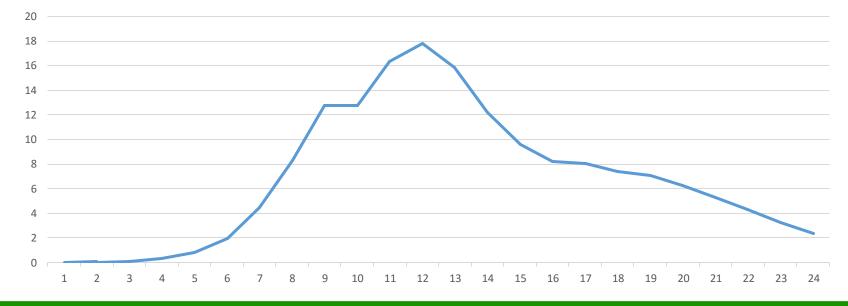

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku




#### EV load profile – week day



#### % of maximum EV charging capacity

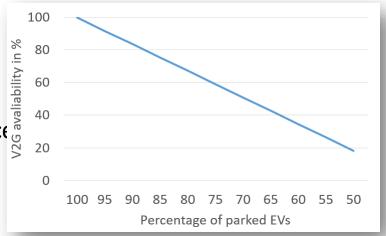



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku





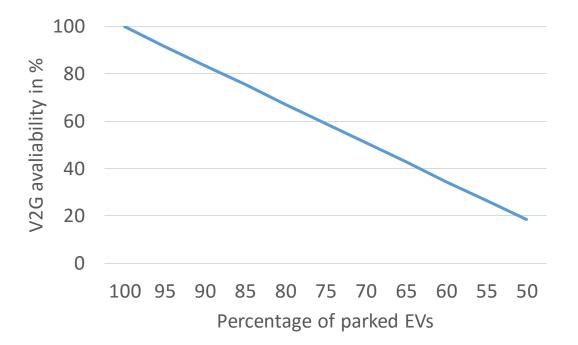
#### % of maximum EV charging capacity




Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



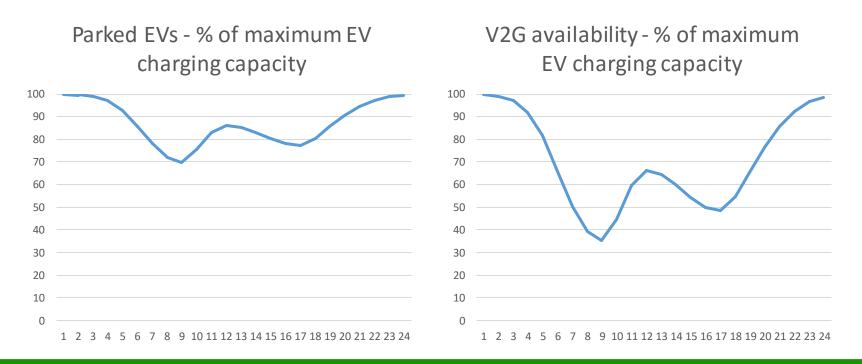
# Available V2G capacity


- Depends on:
- epends on:
  Number of parked EVs (not moving)
  Number of parked EVs on parking place
- Availability of parked EV capacity
- Approach and **assumptions**:
  - During night hours most of parked EVs are also available for V2G
  - During peak traffic hours avaliability of parked EVs for V2G is lowest
  - Availability for V2G is inversly proportional to number of moving EVs





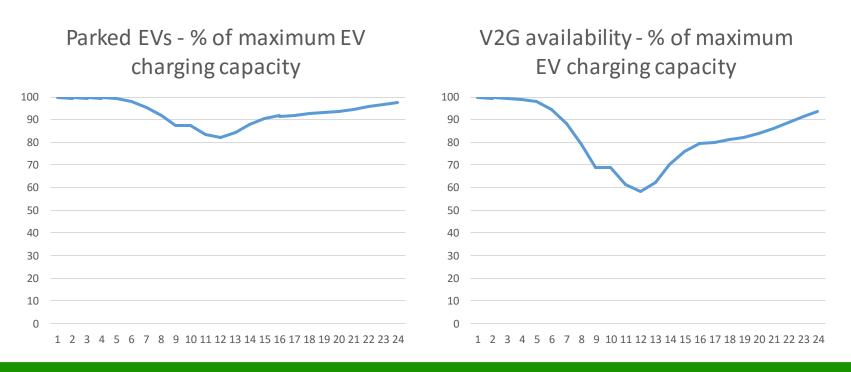
#### V2G availability function


- If all EVs are parked availability is 100 %
- During peak trafic hours availability is 50 %
- It is assumed that alt least 70% of EVs are always parked



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

#### V2G availability – week day





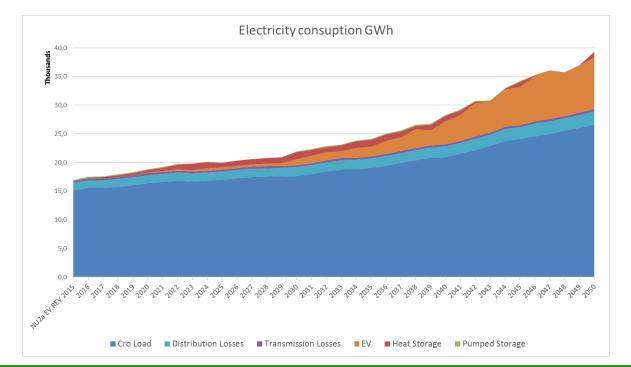

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

#### FER

#### V2G availability – weekend day



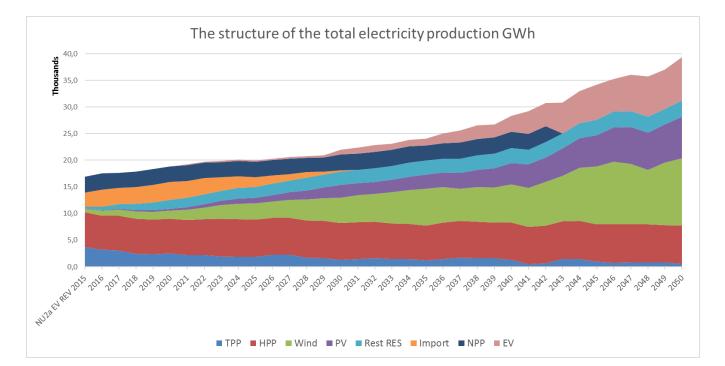
Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku




# **Results of scenarios**

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

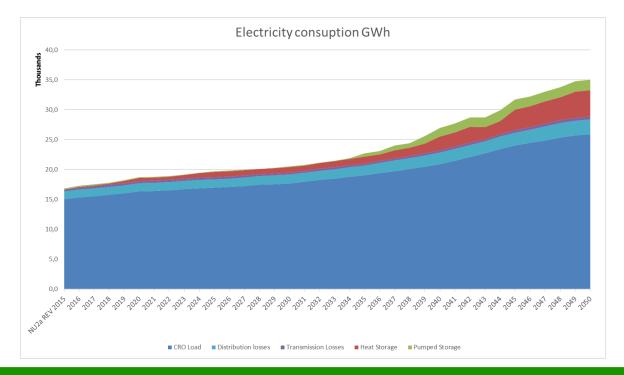
#### **Results with EVs modeled**





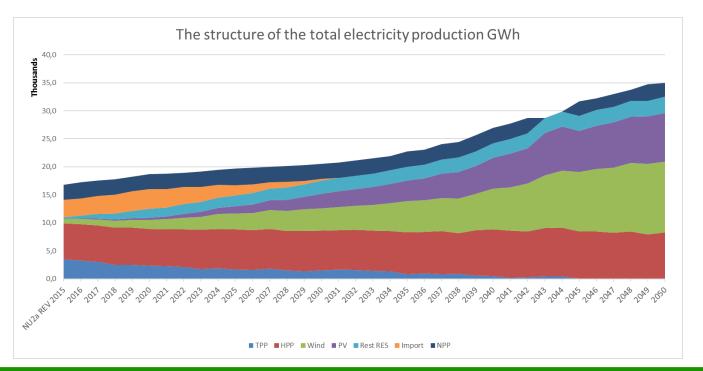

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

## **Results with EVs modeled**





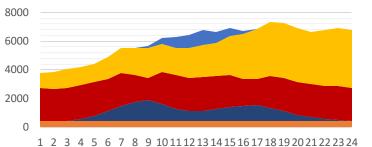

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



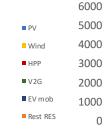

## **Results without EVs modeled**



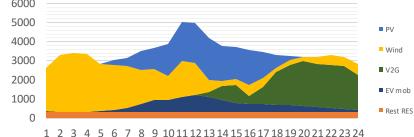
Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku


## **Results without EVs modeled**

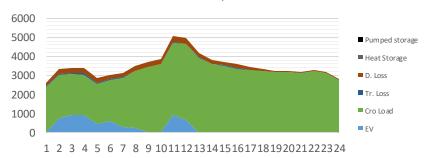



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

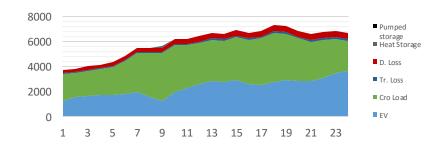



## EV: electricity consumer or producer?




Production January MWh




Production July MWh



Load July MWh



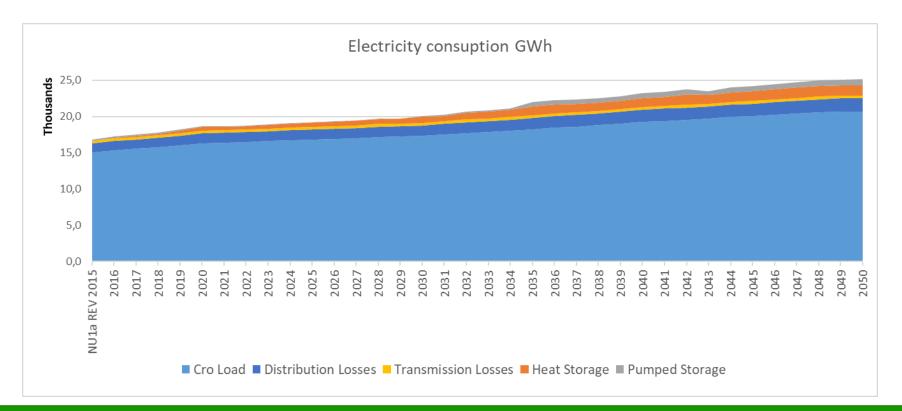
#### Load January MWh



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



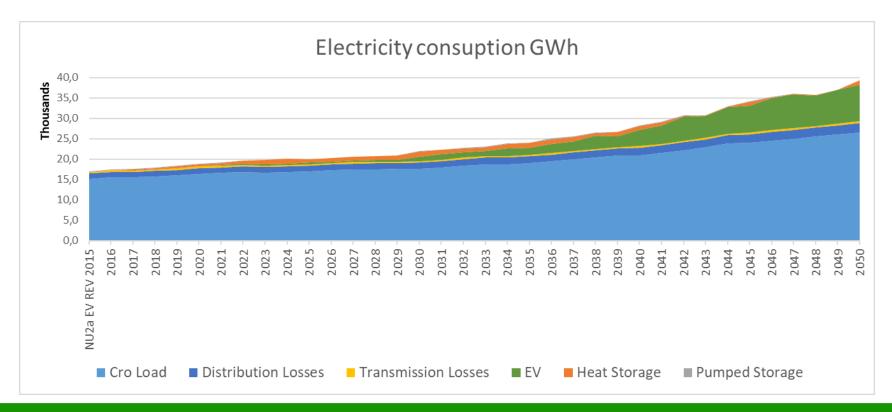



## Additional flexibility

- EVs in 2050. will consume around 4,5 TWh
- It is estimated that additional EV electricity consumption for V2G will be also around 4,5 TWh in 2050.
- That is significant additional flexibility added to system
- With chargers larger than 3,5 kW (highly possible) this flexibility will be even larger
- Network issues?
  - Just in terms of costs

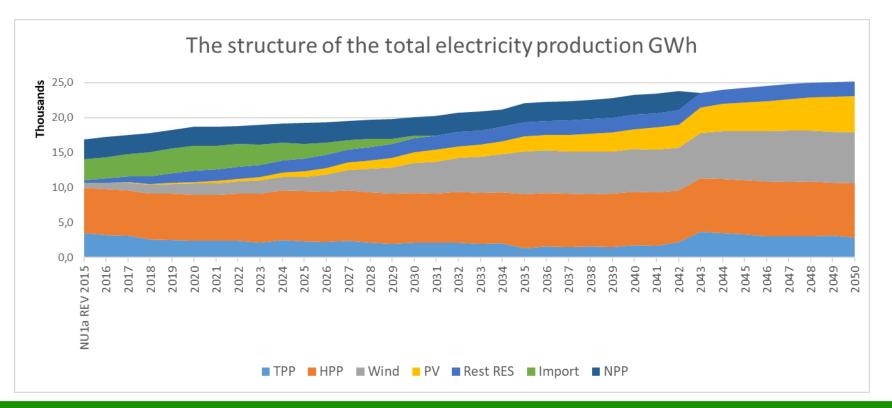
Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

#### FER


# NU1a & NU2a\_EV



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

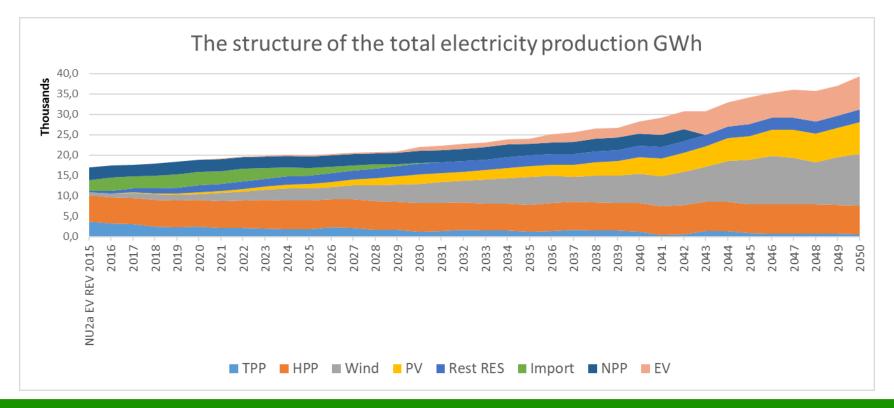



## NU1a & NU2a\_EV



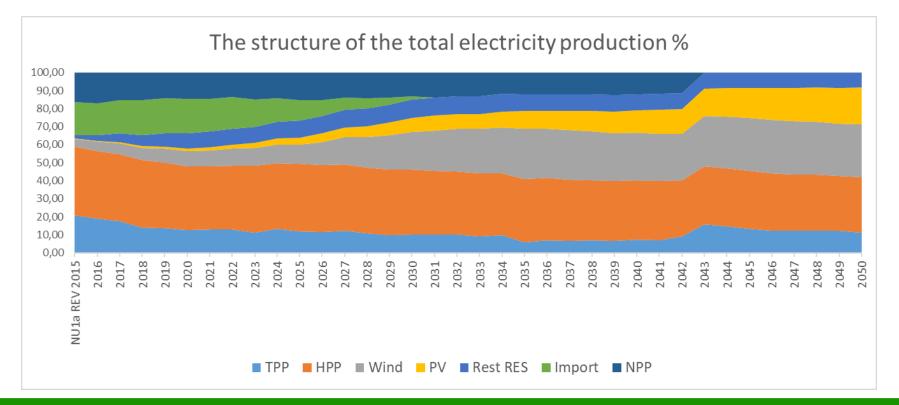
Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

## NU1a & NU2a\_EV



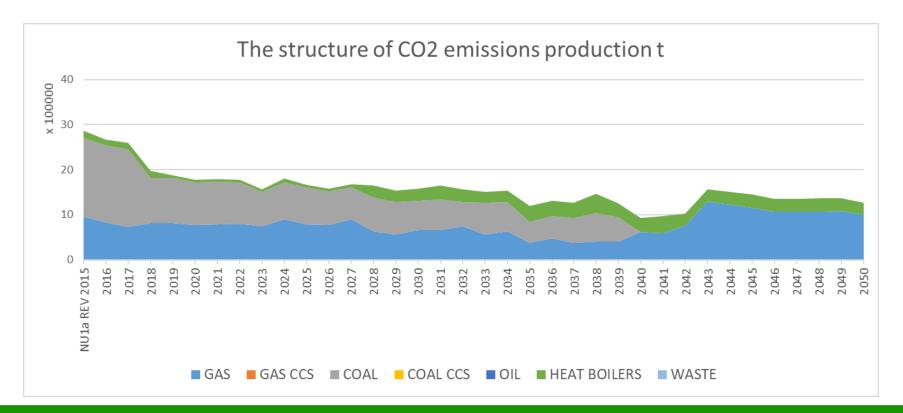

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku





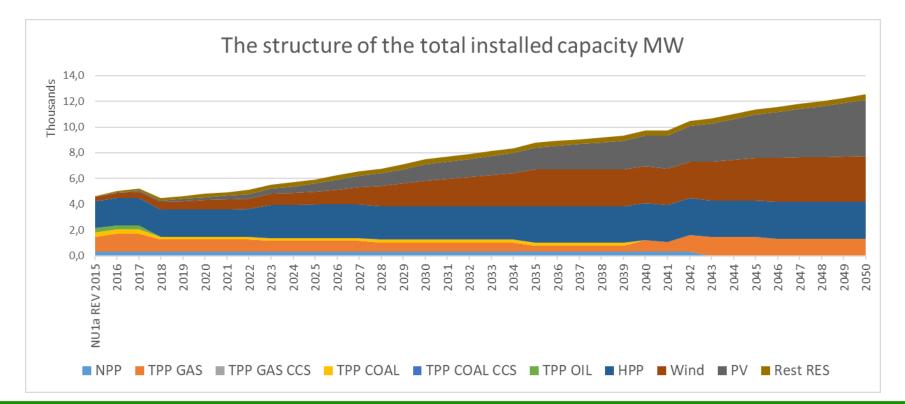

## NU1a & NU2a\_EV




Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



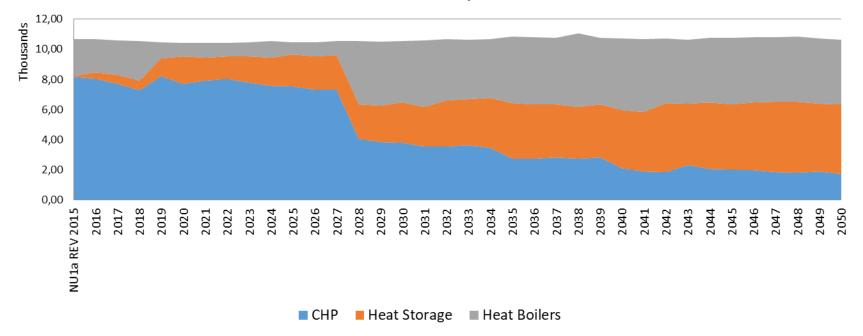



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



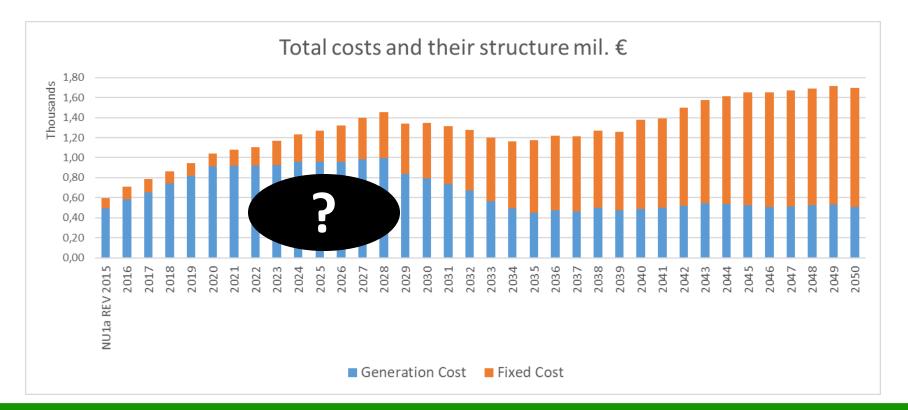


Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



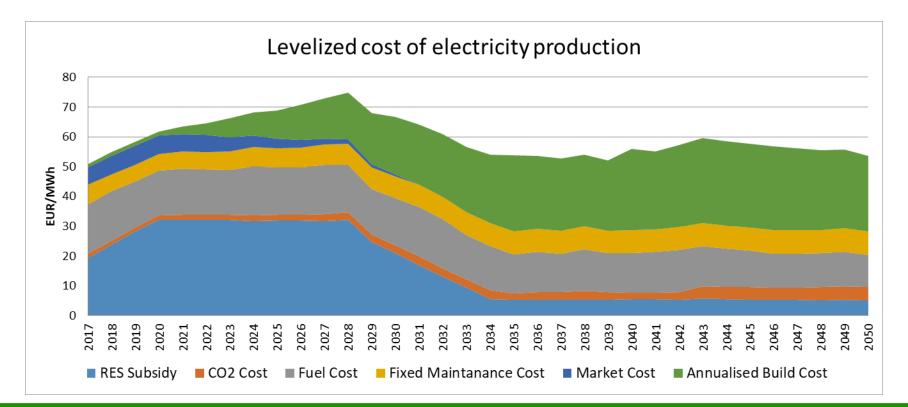



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku




#### The structure of heat production TJ



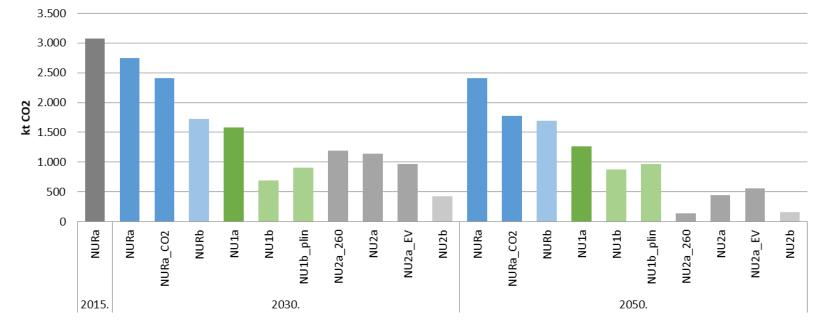

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku





Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku






Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

### **Comparison of scenarios**



#### **CO2** Emissions



Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

#### Comparison of the main indicators of scenarios - Range of renewables in NU1 i NU2 scenarios



|               |    | 2015. | 2030.        | 2050.         |
|---------------|----|-------|--------------|---------------|
| Capacity      |    |       |              |               |
| НРР           | MW | 2.095 | 2.609        | 2.609-3.609   |
| Wind          | MW | 418   | 1.520-2.200  | 2.200 - 6.720 |
| seWind_       | MW | 48    | 1.140 - 1860 | 3.299 - 6.381 |
| Other RES     | MW | 88    | 385 - 450    | 410 - 530     |
| Biomass PP    | MW | 25    | 140 - 170    | 140 - 220     |
| Biogas PP SE  | MW | 27    | 90 - 100     | 90 - 120      |
| Geothermal PP | MW | 0     | 35 - 40      | 40 - 50       |
| Small HPP     | MW | 36    | 120 - 140    | 140           |

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku



## Conclusion

- In all scenarios **significant RES** share increase is expected especially in photovoltaic and wind power volatile nature
- Additional flexible power plants/other assets should be also commissioned.
- If assumptions and measures stated in Croatian LEDS would be implemented and achieved, then Croatia will be able to develop and design its power system in alignment with international and European requirements regarding CO2 emissions that are set.

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku