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Context

I Thermal inertia allows decoupling the electrical & thermal demand without loss of comfort
→ opportunity for demand response!
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Introduction & motivation

I Many research/policy papers on ‘the value of demand response’:
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Source: A. Arteconi et al., Active demand response with electric heating systems: Impact of market
penetration, Applied Energy, Vol. 177, 2016, pp. 636–648.
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Limiting assumptions in current modeling efforts

I Representation of physical/technical characteristics of the DR resource;

I Non-disruptive end-energy service (e.g. guaranteed thermal comfort);

I Perfectly controllable DR;

I Objective DR provider perfectly aligned with system/aggregator objective;

I Limited heterogeneity in the representation of the DR resource;

I . . .
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Research questions

1. The system perspective:
I How can we study the system value (arbitrage & operating reserves) of demand response with

thermostatically controlled loads?
I What is the impact of requiring thermal comfort at all times?
I What is the impact of limited controllability on the system value?
I Source: K. Bruninx et al., ‘Valuing Demand Response Controllability via Chance Constrained

Programming’, IEEE Trans. Sustain. Energy, vol. 9, no. 1, 2018.

2. The aggregator perspective:
I How can we study the strategic participation of an aggregator in a market while guaranteeing that all

user-defined comfort constraints are met?
I . . . interaction between an aggregator and its demand response providers?
I . . . if demand response providers are limitedly controllable?
I Source: K. Bruninx et al., On the Interaction between Aggregators, Electricity Markets and

Residential Demand Response Providers, submitted to IEEE. Trans. Power Syst., 2018.
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PART 1: The system perspective



Demand response & unit commitment models

Minimize E[Total Operating Cost]

Subject to

I D + DR = generation + RES;

I Technical constraints of power plants and
energy storage systems;

I Limited predictability wind and solar
→ Probabilistic reserve requirements;

I Physical demand side model.

Source: D. Patteeuw et al., Integrated modeling of
active demand response with electric heating
systems coupled to thermal energy storage systems,
Applied Energy, Vol. 151, 2015, pp. 306–319.

Heating system models

Building (stock) models

User behavior and weather data
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Endogenous probabilistic reserve sizing and allocation in UC models

RES

D

Time

P
ow

er

p(RES)

RES

Power

P
ro

b
ab

ili
ty

Source: Bruninx, K., Delarue, E., Endogenous probabilistic reserve sizing and allocation in unit
commitment models: cost-effective, reliable and fast, IEEE Transactions on Power Systems, vol. 32,
no. 4, 2017.
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Endogenous probabilistic reserve sizing and allocation in UC models

+ Approximation of expected deployment
costs, hence endogenous reserve sizing
possible and close to optimal UC schedules;

+ Fast;

+ Ensured feasibility of real-time deployment of
energy storage and DR-based regulation;

− Conservative, especially for energy storage
and DR-based regulation services.
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Value of controllable DR

I DR-arbitrage → more cost-efficient upward
reserve provision;

I DR-reserves → higher uptake RES-based
generation, while guaranteeing thermal
comfort.
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Value of controllable DR
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Challenging the guaranteed thermal comfort-assumption
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Value of thermal discomfort
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Challenging the perfectly controllability-assumption

Minimize E[Total Operating Cost]

Subject to

I D + DR = generation + RES

→ Pr(D + D̃R ≤ generation + RES) ≥ 1− ε;

I Technical constraints of power plants and energy storage
systems;

I Limited predictability wind and solar
→ Probabilistic reserve requirements;

I Physical demand side model.
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Value of limitedly controllable DR-based arbitrage
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Concluding remarks - the system perspective

A novel unit commitment model considering a physical demand response model & RES forecast
uncertainty allows illustrating that

I significant operating cost reductions may be attained by leveraging demand response with
electric heating systems for arbitrage & ancillary services;

I this value can be increased if thermal discomfort is allowed to a limited extent;

I imperfectly controllable demand response may hold limited value for a risk-averse power
system operator.
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PART 2: The aggregator’s perspective



The aggregator perspective

I How can we study the strategic participation of an aggregator in a market while guaranteeing that
all user-defined comfort constraints are met?

I . . . interaction between an aggregator and its demand response providers?

I . . . if demand response providers are limitedly controllable?

AGGREGATOR

OF: Profit Maximization

MARKET CLEARING

OF: Social Welfare Maximization

DEMAND RESPONSE PROVIDER

OF: Energy Costs Minimization
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Literature review

Interaction DR aggregator – electricity markets

I Price-taking agent → optimization models (Xu et al., 2017, Mathieu et al., 2015, Zugno et al.,
2013);

I Strategic price-maker → Stackelberg Game → bilevel optimization problem/MPEC (Kazempour
et al., 2015, Kardakos et al., 2016).

Interaction DR aggregator – DR provider

I Leader-follower → Stackelberg Game → bilevel optimization problem/MPEC (Li et al., 2016, Yu
et al., 2016, Zugno et al., 2013);

I Collaboration → Nash Bargaining Game → optimization problem (Contreras et al., 2017, Hoa et
al., 2016, Ye et al., 2017)

Limited controllability

I System studies/non-strategic aggregators → chance constrained programming;

I Uncertain availability of DR resources (Li et al., 2015, Zhang et al., 2017);

I Limited controllability (Bruninx et al., 2017).
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Methodology: Aggregator’s perspective

Objective: maximize operating profit

Maximize ΠA =
∑
t∈T

[
RA(λA

h,t ,D
H
t )−

∑
ω∈Ω

πω ·λt,ω ·qagg
t,ω

]

I Revenue RA(λA
h,t ,D

H
t ), based on retail rate λA

h,t and DR load DH
t ;

I Expenses in whole-sale market
∑

ω∈Ωπω ·λt,ω ·qagg
t,ω , with λt,ω the market clearing price.

subject to
P
(
Qagg

t ≥DH
t , ∀t∈T

)
≥1−ε

I Chance constraint: procure sufficient electricity to cover the limitedly controllable DR load DH
t

with a probability of (1− ε)·100%;

DH
t =(1 + δP) ·

∑
h∈H

NBh ·dH
h,t +δNP, ∀t∈T

I Assume δP and δNP follow a Gaussian distribution → SOC
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Methodology: Market operator’s perspective

Objective: maximize total surplus w.r.t. the bids and offers of the market participants

Maximize
∑
t∈T

[
Pd ·dt,ω+Pagg ·qagg

t,ω −
∑
i∈I

Pg
i · gi,t,ω

]
Subject to:

− wt,ω−
∑
i∈I

gi,t,ω+dt,ω + qagg
t,ω = 0 (λt,ω)

0 ≤ gi,t,ω ≤ Gi

0 ≤ dt,ω ≤ Dt

0 ≤ wt,ω ≤Wt,ω

0 ≤ qagg
t,ω ≤ Qagg

t

Market clearing condition (price)

Generation limit (conventional)

Demand

Generation limit (RES)

Aggregator bid limit
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Methodology: Demand Response Provider’s perspective

Objective: minimize the cost of electric space heating and hot water production

Minimize
∑
t∈T

λA
h,t ·dH

h,t

subject to

θh,t − θh,t−1 = G(dH
h,t ,Ch,Ph,Ah,Eh,t)

θh,t≤θh,t≤θh,t , ∀t∈T

Source: D. Patteeuw et al., Integrated modeling of active demand

response with electric heating systems coupled to thermal energy

storage systems, Applied Energy, Vol. 151, 2015, pp. 306–319.

Heating system models

Building models

Consumer behavior
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Methodology: Aggregator – Market Interaction

Maximize Operating profit

subject to

Chance constraints: P
(
Qagg

t ≥DH
t , t∈T

)
≥1−ε

Market clearing: (λt,ω, q
agg
t,ω ) = argmax{Total surplus s.t. market clearing conditions}

I Assume: aggregator (leader) decides on bid in the wholesale market (follower);

I Bilevel optimization problem → KKT conditions market clearing problem → MPEC → MIQCP
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Methodology: Aggregator – Demand Response Provider Interaction

Retailer ∼ Stackelberg Game

I flat retail rate λA
h,t = λA → Consumers minimize their energy demand;

I dH
h,t : parameter in the retailer’s problem

I Assume: best possible case for consumer → profit-neutral retailer:∑
h∈H

NBh ·RR
h =

∑
t∈T

∑
ω∈Ω

πω ·λt,ω ·qagg
t,ω

Aggregator ∼ Nash Bargaining Game, S(Stackelberg Game) ∈ S(Nash Bargaining Game)

I DR providers collaborate with the aggregator;

I Total benefit of this collaboration:

B =
∑
h∈H

NBh · RR
h −

∑
t∈T

∑
ω∈Ω

πω · λt,ω ·qagg
t,ω

I Division of benefit → Nash Bargaining Game, i.e., contract, not on day-to-day basis;

I Aggregator can only influence
∑

t∈T
∑

ω∈Ωπω ·λt,ω ·qagg
t,ω on day-to-day basis;

I No restrictions on formation retail rate & guaranteed thermal comfort? → S(Stackelberg Game)
∈ S(Nash Bargaining Game)!
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Equivalent MIQCP

Retailer
Maximize −

∑
t∈T

∑
ω∈Ω

πω ·λt,ω ·qagg
t,ω

s.t. Chance constraint: P
(
Qagg

t ≥DH
t , t∈T

)
≥1−ε

Profit neutrality:
∑

h∈HNBh ·RR
h =

∑
t∈T
∑

ω∈Ωπω ·λt,ω ·qagg
t,ω

dH
h,t assumed given

Market clearing constraints

Aggregator

Maximize −
∑
t∈T

∑
ω∈Ω

πω ·λt,ω ·qagg
t,ω

s.t. Chance constraint: P
(
Qagg

t ≥DH
t , t∈T

)
≥1−ε

Demand response model

Market clearing constraints
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Case study

We’ll show how . . .

I the aggregator shifts heating demand from high to low price periods, without jeopardizing the
thermal comfort of its consumers;

I the benefit of the aggregator - consumer collaboration decreases if demand response loads become
less controllable. Liquid intraday and balancing markets limit impact limited controllability.

Data & assumptions

I ∼ isolated Belgian power system, additional gas-fired generation to cover electrified heating
demand;

I Wind energy ∼ 50% of the annual energy demand (excl. electric space heating);

I Number of DR providers
∑

h∈H NBh = 106 → average 2030 low-energy building;

I Stochastic occupancy model → equivalent comfort constraints;

I Reference case: retailer serving a perfectly controllable/predictable heating demand;

I Most results for 316th day of the calendar year (abundant wind power during first hours of the
day, median of heating season conditions).
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Optimal bidding strategies – Perfectly controllable heating loads

I Aggregator avoids high λDA
t period by shifting heating demand DH

t to the night;
I Significant pre-heating (space heating) and pre-charging (hot water tanks), but day-zone & hot

water temperatures remain within user-specified comfort constraints.

10 20
0

20

40

60

Time (h)

λ
D
A

t
(e

/
M

W
h

)

RET AGG-PC

(a) Day-ahead electricity price

10 20
0

2

4

6

Time (h)

D
H t

(G
W

)

RET AGG-PC

(b) Heating demand

10 20

20

22

Time (h)

T
em

p
er

a
tu

re
(◦

C
)

DRP A DRP B

50

60

(c) Day-zone (solid) and hot water
(dashed) temperatures (AGG)

26/31



Optimal bidding strategies – Limitedly controllable heating loads

I Risk-averse aggregator is able to maintain day-ahead price profile λDA
t , but more procurement

during the high price period;
I Procured demand DH

t during the night remains approximately the same, but part of this procured
quantity is ‘reserved’ to deal with unexpected real-time deviations;

I Excess/deficits can be sold/bought in intraday markets: risk-averse aggregator is more likely to
sell, but sees lower prices λID

t .
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Sensitivity analysis w.r.t. ε, δP ∼ N(0, σP) and δNP ∼ N(0, σNP)
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Figure: Change in benefit B of the consumer-aggregator cooperation for different ε, δP ∼ N(0, σP) and
δNP ∼ N(0, σNP) values for the 316th day of the calendar year.
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Sensitivity analysis w.r.t. heating demand
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Concluding remarks - the aggregator’s perspective

Model

I Strategic interaction aggregator – wholesale market ∼ Stackelberg game;

I Cooperation aggregator – DR provider ∼ Nash Bargaining game on division benefits,
solution equivalent Stackelberg game ∈ set outcomes of Nash Bargaining Game;

I Limited controllability of DR providers → chance constraints.

Case study

I Aggregator may lower wholesale prices by actively managing limitedly controllable resources,
respecting consumer’s comfort constraints;

I As the DR resource becomes less controllable and the aggregator becomes more risk-averse → the
aggregator’s profit decreases, but impact is limited if intraday markets are sufficiently liquid.
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Concluding remarks

To sum up:

I Two different perspective, both illustrating significant benefits in DR with TCLs;

I Violating thermal comfort leads to system-wide savings, but compensation available to consumers
may be insufficient;

I Impact limited controllability depends on perspective & model assumptions: system perspective
may be too conservative, whereas intraday markets may be represented as too liquid.

Future work:

I Consumer-centric perspective;

I Sub-rational consumer behavior;

I Other aggregator strategies - e.g., risk-aversion;

I . . .
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Contact: kenneth.bruninx@kuleuven.be

Publications: www.mech.kuleuven.be/en/tme/research/energy_environment
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