

Mathematical model of flexible multi-energy industrial prosumer under uncertainty

Authors: Matija Kostelac, Ivan Pavić, Tomislav Capuder Company: University of Zagreb Faculty of Electrical Engineering and Computing

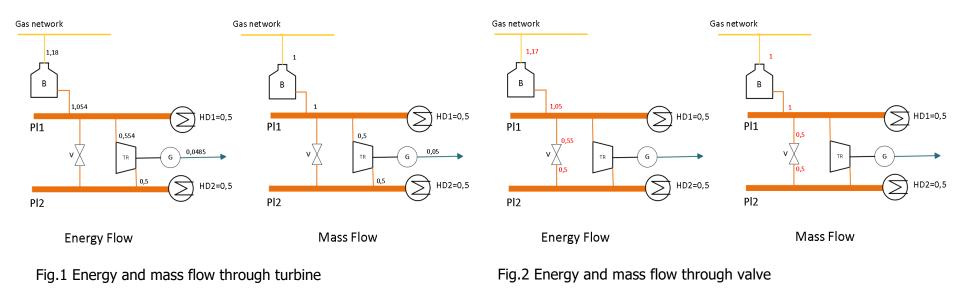
Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Content

- 1. Introduction
- 2. Model description
 - 1. Energy flow
 - 2. Stochastic approach
- 3. Case study
- 4. Test models
- 5. Results
- 6. Conclusion
- 7. What to watch for?

Introduction (1)

- Energy intensive industrial prosumers
- Multi-energy systems:
 - Electricity
 - Gas
- Electricity production: back pressure turbines
- Stochastic variables: price, consumption
- Market bidding
 - Day-ahead market
 - Intra-day market



Introduction (2)

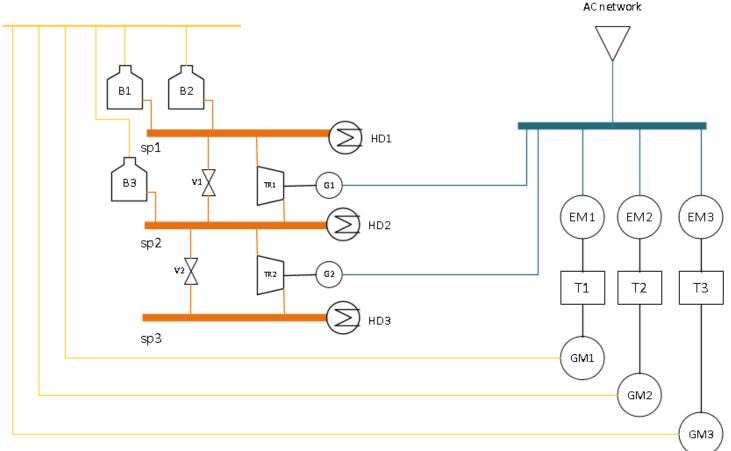
- Two-stage stochastic mixed integer linear program with recourse
- Objective: cost reduction
- Python
- Gurobi optimization solver
- Contributions:
 - Energy flow
 - Stochastic approach

Energy flow

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Stochastic approach

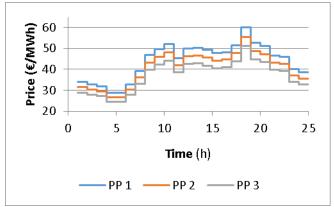
- First stage
- Here and now
- Decision must be made before realization of stochastic process
- Scenarios:
 - Price of electricity
 - Consumption

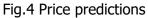

- Second stage
- Wait and see
- Scheduling after the realization of stochastic process for each scenario
- Must follow first stage decisions

- Recourse
- Corrective scheduling after market closure
- Real prices and consumption
- Must follow first stage decisions

Case study (1)

Gas n et work


Fig.3 Industrial plant layout


Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Case study (2)

- 3 price prediction scenarios (PP)
- 3 price realization cases (RP)
- 3 consumption scenarios
 (C)

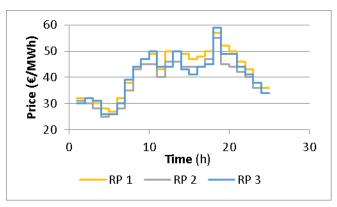


Fig.5 Price realizations

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Test models (1)

- Efficiency and market model (EMM)
 - Goal: Plant's operation efficiency
 - Uses mass model
 - Doesn't take prices into consideration
 - Must compete on the day-ahead market
 - Recourse stage: only to calculate losses, balancing energy and real cost

Test models (2)

- Business as usual (BaU)
 - Doesn't use optimization
 - Doesn't have flexibility between electricity and gas
 - Predetermined devices
 - Must compete on the day-ahead market
 - Must balance it self on the intra-day market

Results (1)

- First stage:
 - Gas volume: 1194,99 MWh.
 - Electricity volume: fig. 6
- Second stage:
 - Average cost: 54061.45 €

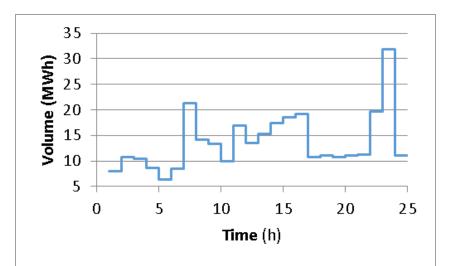


Fig.6 Volumes of electricity bought from day-ahead market

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Results (2)

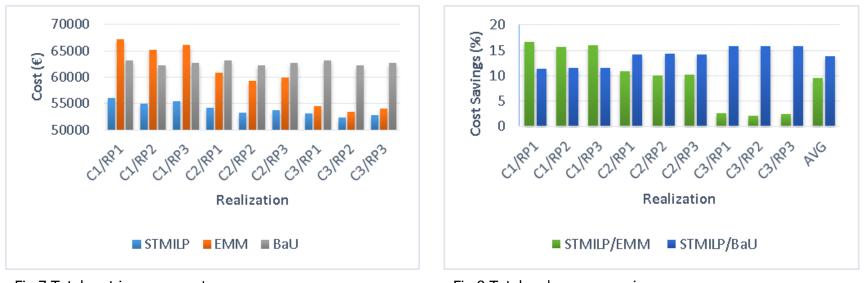


Fig.7 Total cost in recourse stage

Fig.8 Total and average savings

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Conclusion

- Energy flow:
 - Provides more realistic model
- Consumption scenarios:
 - Cover for variations in consumption
 - Lowers penalties
- Price scenarios:
 - Create favorable position on the market
 - Reduce effects of market variability
- Cost variation is reduced
- Saving:
 - Around 10-15% in total cost

What to watch for?

- Is optimization good?
- Realistic model:
 - Proper device models and input parameters
 - EMM average saving is 4% when compared to BaU
 - In some cases BaU is cheaper that EMM
 - EMM has high cost variability
- Predictions sensitivity:
 - Price predictions: can lead to unfavorable market position
 - Consumption scenarios: can lead to increased need for balancing on intra-day market

Acknowledgments

 Project has been supported by the China-Croatian Science and Technology Exchange Program Basic Research on Urban Flexible Multi-Energy System under project FUTURE – Flexible Urban Systems in Multi-Energy Environment and by project IRES-8 – Instigation of Research and Innovation Partnership on Renewable Energy, Energy Efficiency and Sustainable Energy Solutions for Cities

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku