Combinatorial Designs Man versus Machine

Anamari Nakić

Department of Energy and Power Systems Faculty of Electrical Engineering and Computing University of Zagreb

Zagreb 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The theory of combinatrial designs

• 1850 • Thomas Kirkman

Statistical experiments

Balanced incomplete block designs

Fiber-optic communication

Optical orthogonal codes

Software testing

Covering arrays

Schoolgirls problem

Electrical engineering

 Generalized balanced tournament designs

Interconnection computer networks

Cyclic projective planes

Cryptographic communication

Orthogonal arrays

Theory of error-correcting codes

Steiner systems

Agricultural engineering

- Latin squares
- Algebra
 Number theory

Geometry

Binary Golay code

• (24, 12, 8) error-correcting code

Application

- NASA deep space missions
- Radio communications

Binary Golay code can be constructed from Steiner system 5-(24, 8, 1).

The theory of combinatrial designs

• 1850 • Thomas Kirkman

Statistical experiments

Balanced incomplete block designs

Fiber-optic communication

Optical orthogonal codes

Software testing

Covering arrays

Schoolgirls problem

Electrical engineering

 Generalized balanced tournament designs

Interconnection computer networks

Cyclic projective planes

Cryptographic communication

Orthogonal arrays

Theory of error-correcting codes

Steiner systems

Agricultural engineering

Latin squares

Algebra
 Number theory

Geometry

・ロト ・合ト ・ヨト ・ヨト

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Figure: Steiner system 2-(7, 3, 1)

Figure: Steiner system 2-(7,3,1)

Definition

A Steiner system 2-(v, 3, 1) is a finite incidence structure $(\mathcal{V}, \mathcal{B})$, where

- \mathcal{V} is a set of v elements called *points*,
- ▶ B is a set of 3-subsets of V called *blocks*,
- every set of 2 points is contained in precisely 1 block.

The existence of Steiner triple systems

Figure: Dave vs. HAL in 2001: A Space Odyssey

• Designs $(\mathcal{V}, \mathcal{B})$ and $(\mathcal{V}, \mathcal{B}')$ are isomorphic if there exists a bijection $\alpha : \mathcal{V} \to \mathcal{V}$ such that $\alpha \mathcal{B} = \mathcal{B}'$.

Steiner triple systems - automorphisms

- Automorphism of $(\mathcal{V}, \mathcal{B})$ is a permutation $\pi : \mathcal{V} \to \mathcal{V}$ such that $\pi(\mathcal{B}) = \mathcal{B}$.
- Set of all automorphisms of a design $(\mathcal{V}, \mathcal{B})$ is a group.

Steiner triple systems - automorphisms

- Automorphism of $(\mathcal{V}, \mathcal{B})$ is a permutation $\pi : \mathcal{V} \to \mathcal{V}$ such that $\pi(\mathcal{B}) = \mathcal{B}$.
- Set of all automorphisms of a design $(\mathcal{V}, \mathcal{B})$ is a group.

Steiner triple systems - automorphisms

- Automorphism of $(\mathcal{V}, \mathcal{B})$ is a permutation $\pi : \mathcal{V} \to \mathcal{V}$ such that $\pi(\mathcal{B}) = \mathcal{B}$.
- Set of all automorphisms of a design $(\mathcal{V}, \mathcal{B})$ is a group.

+

 $1 \ 2 \ 4$

< □ > < 部 > < E > < E > E の Q (~ 17/47

Steiner triple systems - generalization

Definition

A Steiner system 2-(v, 3, 1) is a finite incidence structure $(\mathcal{V}, \mathcal{B})$, where

- \mathcal{V} is a set of v elements called *points*,
- ▶ B is a set of 3-subsets of V called *blocks*,
- every set of 2 points is contained in precisely 1 block.

Steiner triple systems - generalization

Definition

A Steiner system 2-(v, k, 1) is a finite incidence structure $(\mathcal{V}, \mathcal{B})$, where

- \mathcal{V} is a set of v elements called *points*,
- B is a set of k-subsets of V called blocks,
- every set of 2 points is contained in precisely 1 block.

Steiner triple systems - generalization

Definition

A Steiner system t-(v, k, 1) is a finite incidence structure $(\mathcal{V}, \mathcal{B})$, where

- \mathcal{V} is a set of v elements called *points*,
- B is a set of k-subsets of V called blocks,
- every set of t points is contained in precisely 1 block.

New directions - Steiner systems in vector spaces

Definition

A Steiner system t- $(v, k, 1)_q$ is a finite incidence structure $(\mathcal{V}, \mathcal{B})$, where

- \mathcal{V} is a vector space of dimension v over finite field \mathbb{F}_q ,
- \mathcal{B} is a set of *k*-dimensional subspaces of \mathcal{V} called *blocks*,
- every *t*-dimensional subspace of \mathcal{V} is contained in precisely 1 block.

Peter Cameron's Blog (2014)

I think that this is the most important area to attack next.

22 / 47

Examples.

- ▶ $1-(v,k,1)_q$ designs
- ▶ 2-(13, 3, 1)₂ designs
- ▶ ???
- M. Braun, T. Etzion, P. Ostergard, A. Vardy, A. Wassermann Existence of q-analogs of Steiner systems. arXiv:1304.1462 (2013).

Open problem: the existence of $2-(7,3,1)_q$

Question: does $2-(7,3,1)_q$ exist?

Theorem (Braun, Kiermaier, Nakić, 2015)

If a 2- $(7,3,1)_2$ designs exists, it is either rigid or its automorphism group is cyclic of order 2, 3 or 4.

 M. Braun, M. Kiermaier, A. Nakić. On the automorphism group of a binary q-analog of the Fano plane. European Journal of Combinatorics, to appear (2015).

Combinatorial designs - existence and enumeration

Definition

A Steiner system t-(v, k, 1) is a finite incidence structure $(\mathcal{V}, \mathcal{B})$, where

- \mathcal{V} is a set of v elements called *points*,
- B is a set of k-subsets of V called blocks,
- every set of t points is contained in precisely 1 block.

Combinatorial designs - existence and enumeration

Definition

A t- (v, k, λ) design is a finite incidence structure $(\mathcal{V}, \mathcal{B})$, where

- \mathcal{V} is a set of v elements called *points*,
- B is a set of k-subsets of V called blocks,
- every set of t points is contained in precisely λ blocks.

The existence of 2- (v, k, λ) designs

Necessary conditions (integrality)

$$\lambda \frac{v-1}{k-1}$$
 is integer
$$\lambda \frac{v(v-1)}{k(k-1)} \text{ is integer}$$

Figure: Gary Kasparov vs. Deep Blue

Theorem (Wilson, 1975)

For every fixed k and λ , there is a constant $C(k, \lambda)$, so that if $v > C(k, \lambda)$ and integrality conditions are satisfied, there exists a 2- (v, k, λ) design.

- R. Wilson. An existence theory for pairwise balanced designs, III: Proof of the existence conjectures. J. Comb. Theory A 18(1), 71–79 (1975).
- ▶ P. Keevash. The existence of designs. arXiv:1401.3665 (2014).

:

$t - (v, k, \lambda)$	No.	$t-(v,k,\lambda)$	No.
2 - (7, 3, 1)	1	3 - (8, 4, 1)	1
2 - (7, 3, 2)	4	3 - (10, 4, 1)	1
2 - (7, 3, 3)	10	3 - (14, 4, 1)	4
2 - (7, 3, 9)	17785	3 - (16, 7, 5)	?
2 - (8, 3, 6)	3077244	3 - (17, 7, 7)	?
2 - (8, 4, 3)	4	3 - (19, 9, 140)	?
2 - (8, 4, 12)	> 2310	3 - (19, 9, 644)	?
2 - (15, 5, 2)	0	3 - (20, 5, 8)	> 1
2 - (39, 13, 6)	?	4 - (17, 5, 1)	?
2 - (40, 10, 3)	?	4-(23,7,1)	> 1
2 - (57, 15, 10)	?	4 - (32, 5, 5)	> 1
2 - (55, 10, 4)	?	5 - (12, 6, 1)	> 1
2 - (133, 7, 1)	?	5 - (18, 6, 1)	?
2 - (175, 30, 6)	?	5 - (30, 12, 220)	> 1
2 - (211, 7, 1)	?	5 - (60, 18, 3060)	> 1
2 - (400, 20, 1)	?	6 - (19, 7, 1)	?
2 - (421, 21, 1)	?	7 - (33, 8, 10)	> 1

Handbook of Combinatorial Designs, eds. C. Colbourn, J. Dinitz, 2007.

► Designs $(\mathcal{V}, \mathcal{B})$ and $(\mathcal{V}', \mathcal{B}')$ are isomorphic if there exists a bijection $\alpha : \mathcal{V} \to \mathcal{V}'$ such that $\alpha \mathcal{B} = \mathcal{B}'$.

:

Computational construction of designs

Computational methods for construction of designs

Exhaustive search

▶ The incidence matrix of $(\mathcal{V}, \mathcal{B})$

I	- 0	1	1	1	0	0	ך 0
	1	1	0	0	1	0	0
	1	0	1	0	0	1	0
	1	0	0	1	0	0	1
	0	1	0	0	0	1	1
	0	0	1	0	1	0	1
	0	0	0	1	1	1	0]

Design	Number of matrices	
2 - (7, 3, 1)	$2^{7 \cdot 7}$	$\approx 10^{16}$
2 - (15, 3, 1)	$2^{15\cdot 35}$	$\approx 10^{175}$
3 - (16, 7, 5)	$2^{16 \cdot 80}$	$\approx 10^{426}$
2 - (175, 30, 6)	$2^{175 \cdot 210}$	$pprox 10^{12250}$

Nonexhaustive search

- Automorphism of a design $(\mathcal{V}, \mathcal{B})$ is a mapping $\pi : \mathcal{V} \to \mathcal{V}$ such that $\pi(\mathcal{B}) = \mathcal{B}$.
- ▶ Set of all automorphisms of a design $(\mathcal{V}, \mathcal{B})$ is a group.

Construction of designs with prescribed automorphism group:

The Kramer-Mesner method
 E.S. Kramer, D.M. Mesner.
 t-designs on hypergraphs.
 Discret. Math. 15, 263–296 (1976).
 The method of tactical decomposition
 Z. Janko, T. van Trung.

Construction of a new symmetric block design for (78, 22, 6) with the help of tactical decompositions.

J. Comb. Theory A 40, 451-455 (1985).

Theorem (Nakić, 2015)

If a 3-(16,7,5) design exists, then it is either rigid or its full automorphism group is a 2-group.

Figure: Jeopardy! Pros vs. Watson

Z. Eslami.

On the possible automorphisms of a 3-(16, 7, 5) design. Ars Combinatoria 95, 217-224 (2010).

A. Nakić.

Non-existence of a simple 3-(16, 7, 5) design with an automorphism of order 3. Discrete Mathematics 338(4), 555-565 (2015).

Example: Tactical decomposition of 2-(8, 4, 3) design

N	Incid	lanca	matrix	
	incia	lence	matrix	ŝ

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}	B_{13}	B_{14}
$\overline{p_1}$	1	0	1	0	0	1	1	0	0	0	1	1	0	1
p_2	0	1	1	0	1	0	0	0	1	0	1	0	1	1
p_3	1	0	0	1	1	0	0	1	0	0	1	1	1	0
p_4	0	1	0	1	0	1	0	0	0	1	0	1	1	1
p_5	1	0	1	0	0	1	0	1	1	1	0	0	1	0
p_6	0	1	1	0	1	0	1	1	0	1	0	1	0	0
p_7	1	0	0	1	1	0	1	0	1	1	0	0	0	1
p_8	0	1	0	1	0	1	1	1	1	0	1	0	0	0

Example: Tactical decomposition of 2-(8, 4, 3) design

N	Incid	lonco	matrix
	incia	lence	matrix

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	$ B_{11} $	B_{12}	B_{13}	B_{14}
$\overline{p_1}$	1	0	1	0	0	1	1	0	0	0	1	1	0	1
p_2	0	1	1	0	1	0	0	0	1	0	1	0	1	1
p_3	1	0	0	1	1	0	0	1	0	0	1	1	1	0
p_4	0	1	0	1	0	1	0	0	0	1	0	1	1	1
p_5	1	0	1	0	0	1	0	1	1	1	0	0	1	0
p_6	0	1	1	0	1	0	1	1	0	1	0	1	0	0
p_7	1	0	0	1	1	0	1	0	1	1	0	0	0	1
p_8	0	1	0	1	0	1	1	1	1	0	1	0	0	0
			$[\rho_{ij}]$	$= _{1}$	2	3 1		κ_i	$j = \lfloor$	2 2	3 1			

$$= \begin{bmatrix} 1 & 2 & 1 & 3 \\ 1 & 2 & 3 & 1 \end{bmatrix} \qquad [\kappa_{ij}] = \begin{bmatrix} 2 & 2 & 1 & 3 \\ 2 & 2 & 3 & 1 \end{bmatrix}$$

Definition

A tactical decomposition of a design $(\mathcal{V},\mathcal{B})$ is any partition

 $\mathcal{V} = \mathcal{V}_1 \sqcup \cdots \sqcup \mathcal{V}_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n$

with the property that there exist nonnegative integers ho_{ij} and κ_{ij} such that

- each point of \mathcal{V}_i lies in precisely ρ_{ij} blocks of \mathcal{B}_j ,
- and each block of \mathcal{B}_j contains precisely κ_{ij} points from \mathcal{V}_i .

Matrices $\mathcal{R} = [\rho_{ij}]$ and $\mathcal{K} = [\kappa_{ij}]$ are called *tactical decomposition matrices*.

Orbits of \mathcal{V} and orbits of \mathcal{B} under an action of G form a tactical decomposition of $(\mathcal{V}, \mathcal{B})$.

The method of tactical decomposition for 2-designs

$$[\rho_{ij}] = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 1 & 2 & 3 & 1 \end{bmatrix} \qquad [\kappa_{ij}] = \begin{bmatrix} 2 & 2 & 1 & 3 \\ 2 & 2 & 3 & 1 \end{bmatrix}$$

Γ1	0	1	0	0	1	1	0	0	0	1	1	0	1٦
0	1	1	0	1	0	0	0	1	0	1	0	1	1
1	0	0	1	1	0	0	1	0	0	1	1	1	0
0	1	0	1	0	1	0	0	0	1	0	1	1	1
1	0	1	0	0	1	0	1	1	1	0	0	1	0
0	1	1	0	1	0	1	1	0	1	0	1	0	0
1	0	0	1	1	0	1	0	1	1	0	0	0	1
0	1	0	1	0	1	1	1	1	0	1	0	0	0

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 ペ
35 / 47

 $(\mathcal{V},\mathcal{B})$ is a 2- (v,k,λ_2) design with tactical decomposition

$$\mathcal{V}=\mathcal{V}_1\sqcup\cdots\sqcup\mathcal{V}_m,$$

$$\mathcal{B}=\mathcal{B}_1\sqcup\cdots\sqcup\mathcal{B}_n.$$

Figure: Terminator

$$\sum_{j=1}^{n} \rho_{lj} \kappa_{rj} = \begin{cases} \lambda_1 + (|\mathcal{V}_r| - 1) \cdot \lambda_2, & l = r, \\ |\mathcal{V}_r| \cdot \lambda_2, & l \neq r. \end{cases}$$

$$[\rho_{ij}] = \begin{bmatrix} \vdots & \vdots \\ \rho_{l1} & \cdots & \rho_{ln} \\ \vdots & \vdots \\ \vdots & & \vdots \\ \vdots & & \vdots \end{bmatrix} \qquad [\kappa_{ij}] = \begin{bmatrix} \vdots & \vdots \\ \vdots & \vdots \\ \kappa_{r1} & \cdots & \kappa_{rn} \\ \vdots & \vdots \end{bmatrix}$$

< □ > < 部 > < 書 > < 書 > 差 》 < で) < で 36 / 47 The method of tactical decomposition for 2-(8, 4, 3)

$$\sum_{j=1}^{14} \rho_{lj} \kappa_{rj} = \begin{cases} 7 + (4-1) \cdot 3, & l = r, \\ 4 \cdot 3, & l \neq r. \end{cases}$$

$$[\rho_{ij}] = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 1 & 2 & 3 & 1 \end{bmatrix} \qquad [\kappa_{ij}] = \begin{bmatrix} 2 & 2 & 1 & 3 \\ 2 & 2 & 3 & 1 \end{bmatrix}$$

Theorem (Krčadinac, Nakić, Pavčević, 2014) Let $\mathcal{D} = (\mathcal{V}, \mathcal{B})$ be a t- (v, k, λ_t) design with tactical decomposition

 $\mathcal{V} = \mathcal{V}_1 \sqcup \cdots \sqcup \mathcal{V}_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup \mathcal{B}_n.$

Then the coefficients of $\mathcal{R} = [\rho_{ij}]$ and $\mathcal{K} = [\kappa_{ij}]$ satisfy

$$\sum_{j=1}^{m} \rho_{i_{1j}} \kappa_{i_{1j}}^{m_{1}-1} \kappa_{i_{2j}}^{m_{2}} \cdots \kappa_{i_{s}j}^{m_{s}} = \sum_{\omega_{1}=1}^{m_{1}} \sum_{\omega_{2}=1}^{m_{2}} \cdots \sum_{\omega_{s}=1}^{m_{s}} \lambda_{\omega_{1}+\dots+\omega_{s}} {m_{1} \atop \omega_{1}} (|\mathcal{V}_{i_{1}}|-1)_{\omega_{1}-1} \prod_{j=2}^{s} {m_{j} \atop \omega_{j}} (|\mathcal{V}_{i_{j}}|)_{\omega_{j}}.$$

 V. Krčadinac, A. Nakić, M. O. Pavčević. Equations for coefficients of tactical decomposition matrices for t-designs. Des. Codes Cryptogr. 72(2), 465–469 (2014).

Theorem (Krčadinac, Nakić, Pavčević, 2011)

$$\sum_{j=1}^{n} \rho_{lj} \kappa_{rj} = \begin{cases} \lambda_1 + (|\mathcal{V}_r| - 1) \cdot \lambda_2, & l = r, \\ |\mathcal{V}_r| \cdot \lambda_2, & l \neq r. \end{cases}$$

$$\begin{split} \sum_{j=1}^{n} \rho_{lj} \kappa_{rj} \kappa_{sj} &= \\ &= \begin{cases} \lambda_1 + 3\left(|\mathcal{V}_l| - 1\right) \cdot \lambda_2 + \left(|\mathcal{V}_l| - 1\right) \cdot \left(|\mathcal{V}_l| - 2\right) \cdot \lambda_3, & \text{for } l = r = s, \\ |\mathcal{V}_r| \cdot |\mathcal{V}_s| \cdot \lambda_3, & \text{for } l \neq r \neq s \neq l, \\ |\mathcal{V}_s| \cdot \lambda_2 + \left(|\mathcal{V}_r| - 1\right) \cdot |\mathcal{V}_s| \cdot \lambda_3, & \text{otherwise.} \end{cases} \end{split}$$

Theorem (Nakić, 2015)

If a 3-(16,7,5) design exists, then it is either rigid or its full automorphism group is a 2-group.

New directions - designs in vector spaces

イロト イポト イヨト イヨト 二日

40 / 47

Definition

A t- (v, k, λ) design is a finite incidence structure $(\mathcal{V}, \mathcal{B})$, where

- \mathcal{V} is a set of v elements called *points*,
- ▶ B is a set of k-subsets of V called blocks,
- every set of t points is contained in precisely λ blocks.

New directions - designs in vector spaces

Definition

A t- (v, k, λ_t) design over a finite field is a pair $(\mathcal{V}, \mathcal{B})$, where

- \mathcal{V} is a *v*-dimensional vector space over the finite field \mathbb{F}_q
- ▶ B is a set of k-dimensional subspaces of V called blocks,
- every *t*-dimensional subspace of \mathcal{V} is contained in precisely λ blocks.
- P. Cameron. Locally symmetric designs. Geom. Dedicata 3, 56–76, (1974).
- P. Delsarte. Association schemes and t-designs in regular semilattices. J. Combin. Theory Ser. A 20(2), 230–243 (1976).

Theorem (Nakić, Pavčević, 2014) If $(\mathcal{V}, \mathcal{B})$ is a 2- $(v, k, \lambda)_q$ design with tactical decomposition

$$\mathcal{V} = \mathcal{V}_1 \sqcup \cdots \sqcup \mathcal{V}_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup_n,$$

then

$$\sum_{j=1}^{n} \rho_{lj} \kappa_{rj} = \begin{cases} \lambda_1 + (|\mathcal{V}_r| - 1) \cdot \lambda_2, & l = r, \\ |\mathcal{V}_r| \cdot \lambda_2, & l \neq r. \end{cases}$$

A. Nakić, M.O. Pavčević. *Tactical* decompositions of designs over finite fields. Des Codes Crypto, DOI 10.1007/s10623-014-9988-7 (2014).

Figure: The Duel: Timo Boll vs. KUKA Robot

Theorem (De Boeck, Nakić, 2015) If $(\mathcal{V}, \mathcal{B})$ is a 3- $(v, k, \lambda)_q$ design with tactical decomposition

 $\mathcal{V} = \mathcal{V}_1 \sqcup \cdots \sqcup \mathcal{V}_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup_n,$

then

$$\begin{split} \sum_{j=1}^{n} \rho_{lj} \kappa_{rj} \kappa_{sj} &= \\ &= \begin{cases} \lambda_1 + & \Lambda_{lrs} \cdot \lambda_2 + & (|\mathcal{V}_r| \cdot |\mathcal{V}_s| - \Lambda_{lrs} - 1) \cdot \lambda_3, & \text{ for } l = r = s, \\ & \Lambda_{lrs} \cdot \lambda_2 + & (|\mathcal{V}_r| \cdot |\mathcal{V}_s| - \Lambda_{lrs}) \cdot \lambda_3, & \text{ otherwise.} \end{cases} \end{split}$$

 De Boeck, Nakić: Necessary conditions for the existence of 3-designs over finite fields with non-trivial automorphism groups.
 Finished! (2015).

Theorem (De Boeck, Nakić, 2015) If $(\mathcal{V}, \mathcal{B})$ is a 3- $(v, k, \lambda)_q$ design with tactical decomposition

 $\mathcal{V} = \mathcal{V}_1 \sqcup \cdots \sqcup \mathcal{V}_m, \ \mathcal{B} = \mathcal{B}_1 \sqcup \cdots \sqcup_n,$

then

$$\begin{split} \sum_{j=1}^{n} \rho_{lj} \kappa_{rj} \kappa_{sj} &= \\ &= \begin{cases} \lambda_1 + & \Lambda_{lrs} \cdot \lambda_2 + & (|\mathcal{V}_r| \cdot |\mathcal{V}_s| - \Lambda_{lrs} - 1) \cdot \lambda_3, & \text{ for } l = r = s, \\ & \Lambda_{lrs} \cdot \lambda_2 + & (|\mathcal{V}_r| \cdot |\mathcal{V}_s| - \Lambda_{lrs}) \cdot \lambda_3, & \text{ otherwise.} \end{cases} \end{split}$$

 De Boeck, Nakić: Necessary conditions for the existence of 3-designs over finite fields with non-trivial automorphism groups.
 Finished! (2015).

Open problem

Do Steiner systems $3-(v, k, 1)_q$ exist?

Some results regarding parameter Λ_{lrs}

1.
$$\Lambda_{lrs} = \Lambda_{lsr}$$

2.
$$|\mathcal{V}_l| \cdot \Lambda_{lrs} = |\mathcal{V}_r| \cdot \Lambda_{rls}$$

3.
$$\sum_{s=1}^{m} \Lambda_{lrs} = \begin{cases} |\mathcal{V}_r| \cdot (q+1) + \frac{q^{\nu} - q^2}{q-1} - 1, & l = r, \\ |\mathcal{V}_r| \cdot (q+1), & l \neq r. \end{cases}$$

Figure: Bladerunner

Lemma

The set of 2-subspaces of \mathbb{F}_q^v is a $2 - (v, 2, 1)_q$ design $(\mathcal{V}, \mathcal{L})$. Group $G \leq P\Gamma L(\mathbb{F}_q^v)$ acts on $(\mathcal{V}, \mathcal{L})$ inducing tactical decomposition

$$\mathcal{V} = \mathcal{V}_1 \sqcup \cdots \sqcup \mathcal{V}_m, \qquad \mathcal{L} = \mathcal{L}_1 \sqcup \cdots \sqcup \mathcal{L}_\omega$$

with tactical decomposition matrices $[\rho_{ij}^{\mathcal{L}}]$ and $[\kappa_{ij}^{\mathcal{L}}]$. Then

$$\Lambda_{lrs} = \begin{cases} \sum_{j=1}^{\omega} \rho_{lj}^{\mathcal{L}} \kappa_{rj}^{\mathcal{L}} \kappa_{sj}^{\mathcal{L}} - \lambda_{1}^{\mathcal{L}}, & \text{ for } l = r = s, \\ \sum_{j=1}^{\omega} \rho_{lj}^{\mathcal{L}} \kappa_{rj}^{\mathcal{L}} \kappa_{sj}^{\mathcal{L}}, & \text{ otherwise.} \end{cases}$$

Thank you for your attention!

But they are useless. They can only give you answers. Pablo Picasso

★ロト ★御 と ★ 注 と ★ 注 と … 注