Memory Controller Performance for Smartphone Workloads

Goran Narančić IEEE Croatia Section RL 07 Technical Talk

Zagreb, February 14. 2013.

Motivation: Smartphone Market

The Largest Market Ever

IDC - 1.8 billion mobile phones will ship in 2012

- By the end of 2016, 2.3 billion mobile phones will ship per year

© Copyright Khronos Group 2012 | Page 1

Smartphone Systems

Smartphone Systems

- strict and competing requirements: energy vs. real-time performance
- > are conventional solutions appropriate?

This work

- a step towards smartphone-appropriate memory scheduler designs
- trace-based methodology
 - memory traces with dependence information
- software-based methodology to approximate hardware accelerator behavior
- we study:
 - address mapping schemes
 - memory schedulers
 - Video Conference Workload
 - other smartphone workloads

Content

- 1. Video Conference
- 2. Modeling Specialised Hardware
- 3. Infrastructure Overview
- 4. Results
 - Address Mapping Scheme
 - Scheduler Comparisons
- 5. Summary

Video Conference

two-way video call

a conversation between 2 persons, a video conference between meeting rooms, etc.

But how to simulate the encoder and decoder?

Modelling Specialised Hardware

- devices designed for a specific use
 - optimised execution paths
 - buffers and small caches right where needed
- ideally: collect traffic from a real device
- our approach:
 - instrument software application and collect traces
 - use cache to filte pattern

Encoder

Decoder

Maintaining Ordering Constraints

- traces -> no relationships between requests
- store dataflow information to limit requests

Infrastructure overview

DRAM Organisation

Rank 0									
	Bank 0	Bank 2	Bank 4	Bank 6					
	Bank 1	Bank 3	Bank 5	Bank 7					

Rank 1

Bank 0	Bank 2	Bank 4	Bank 6
Bank 1	Bank 3	Bank 5	Bank 7

DRAM Organisation

- 4GB DDR3 SDRAM at 800 MHz
- logical organisation:
 - 2 ranks [1 bit]
 - 8 *banks* [3 bits]
 - 16384 row [14 bits]
 - 256 columns [8 bits]

Rank 0								
	Bank 0	Bank 2	Bank 4	Bank 6				
	Bank 1	Bank 3	Bank 5	Bank 7				

F	Rank 1							
	Bank 0	Bank 2	Bank 4	Bank 6				
	Bank 1	Bank 3	Bank 5	Bank 7				

Requests, Location and Scheduling

mapping A and B to the same bank, different rows

 PRECH.
 ACTIVATE
 READ A
 PRECH.
 ACTIVATE
 READ B

mapping A and B to the same bank and row

PRECH. ACTIVATE READ A READ B

mapping A and B to different banks

t

t

Requests, Location and Scheduling

mapping A and B to the same bank, different rowstPRECH.ACTIVATEREAD APRECH.ACTIVATEREAD B...

mapping A and B to the same bank and row

PRECH. ACTIVATE READ A READ B PRECH. ACTIVATE READ C

mapping A and B to different banks

t

Requests, Location and Scheduling

mapping A and B to the same bank, different rows

PRECH. ACTIVATE READ A READ C PRECH. ACTIVATE READ B

mapping A and B to the same bank and row

PRECH. ACTIVATE READ A READ B PRECH. ACTIVATE READ C

mapping A and B to different banks

Address mapping and scheduling can have great effect!

t

Content

- 1. Video Conference
- 2. Modeling Specialised Hardware
- 3. Infrastructure Overview
- 4. Results
 - Address Mapping Scheme
 - Scheduler Comparisons
- 5. Summary

Content

- 1. Video Conference
- 2. Modeling Specialised Hardware
- 3. Infrastructure Overview
- 4. Results
 - Address Mapping Scheme
 - Scheduler Comparisons
- 5. Summary

Test Configurations

• scheduler configuration:

	Max Buffer Hits	Command Queue	Transaction Queue	Write Queue	High Mark	Low Mark
Limited	32	8	24	16	12	8
Maximum	1024	512	512	64	60	50

* Our implementation of *TFRR* does not use TQ, so we increase CQ to 20 and 1024

- we examine:
 - address mapping on the VCW workload
 - schedulers on a combination of:
 - Web Browsing, Face Detection, VCW

Address Mapping Schemes

Scheme	Address bits [31-6]								
KBCR	K Bank	K Bank Column			Row				
RCBK	Row			Column			Bank K		
RCKB	Row			Column K			Bank		
KRCB	К	K Row			olumn		Bank		
KBRC	K Bank	Bank Row		Co		lumn			
RBKC		Row		Bank K Co		lumn			
RKBC		Row			K Bank Column				

K designates the rank bits

Address Mapping Schemes: Results

Execution time (20 frames): lower is better

Address Mapping Schemes: Results

RKBC performs best due to high row buffer locality combined with good parallelism

Schedulers

- First Ready First Come, First Served (FR-FCFS)
 baseline, simple
- FR-FCFS with Write Drain (FR-FCFS-WD)
 delays WRITEs to improve READ latency
- Thread-Fair memory scheduler (TF)
 prioritises requests from ROB head
- *Thread Clustering* memory scheduler (*TCM*)
 - thread-ranking strict prioritisation

Scheduler Comparison

Execution time: lower is better

Scheduler Comparison

Execution time: lower is better

Summary

- our contributions
 - trace-based methodology
 - request issuing limited by dataflow
 - uses cache to model specialised hardware
 - no validation (yet)
 - Video Conference Workload
 - model typical smartphone usage
 - our tests show it is memory bound

Summary: Our Findings

- address mapping has significant impact
 - best scheme runs in 1/5 time of the worst one
- compare schedulers
 - older, simpler: FR-FCFS, FR-FCFS-WD
 - newer, thread-concious: Thread-Fair, Thread
 Clustering
 - found that simpler perform better
 - Write Drain mode useful

THANK YOU FOR YOUR ATTENTION!