

Integrated Distribution Network Planning Tool Supported by Geographical Information System

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Content

- 1. IMAGINE Project
- 2. Introduction
- 3. Methodology
- 4. Data Preparation
- 5. Network Planning Using Genetic Algorithms
- 6. Parameters of Genetic Algorithms
- 7. Energy Parameters
- 8. Cost parameters
- 9. Optimization Results

10. Conclusions

IMAGINE Project (1)

- Innovative Modelling and Laboratory Tested Solutions for Next Generation of Distribution Networks
- Keywords:
 - Energy transition
 - Flexibility
 - Mathematic modeling
 - Low carbon distribution networks
 - Power system resistance
 - Security of supply

IMAGINE Project (2)

- End user is becoming more important in new strategies and visions in energy transition
- Energy packet "Clean Energy for All Europeans" emphasizes their role, equal participation on electricity markets and the value of flexibility during the transition towards low carbon power systems
- Currently, end users are mainly passive
- Renewable energy sources, electrical vehicles and electrical heating are creating new challenges for Distribution System Operator (DSO)
- Quality of electric energy and security of supply

IMAGINE Project (3)

- DSO needs, not only, an increase in low voltage (LV) networks observability, but also a creation of services that would encourage flexibility
- The necessity of advanced tools which enable data analysis and help with optimal decisions
- IMAGINE Project goals:
 - Development of models which will enable the defining of flexibility services values for DSO
 - Development of models which will define the ability and value of services for DSO during the transition of the network part into island operation mode
 - Upgrade of SmartGrid laboratory and testing developed models
 - Knowledge exchange with DSO and creating a basis for development of educational center in smart grids operation and control

Introduction (1)

- Complexity and importance of power system
- Minimization of costs and time in which electrical energy is not supplied
- Distribution network planning
- Increased need of finding optimal ways for utilization of data from different sources in power systems
- Availability of the data
- Developing tools for smart management of distribution level power systems

Introduction (2)

- Prior to development of computer science, all geospatial data were physically drawn on maps
- Usage of CAD tools
- CAD tools are being replaced with geographical information system (GIS) tools
- GIS tools enable digitalization of additional technical and economical attributes
- Minimizing the impact of human factor

Introduction (3)

- Croatian DSO's system contains majority of the MV distribution grid
- Increase in the LV distribution grid in Croatian DSO's GIS tool
- Complemented with open source GIS tools
- Usage of Open Street Map layers
- Planning of distribution network based on combining multiple data sources, applications and programming languages

Methodology (1)

- Importance of substations and powerlines with their belonging attributes in the planning phase
- Usage of CADDiN, planning tool that is based on genetic algorithms
- Initially, CAD tools were used for data preparations
- One layer presented powerlines and routes and other layer presented substations
- Initial method of extracting and preparing data made the entire process complex and time consuming

Methodology (2)

- The new tool maintains the logic and modelling behind the CADDiN tool
- Upgraded procedures and scripts, digitalization, automatization

Figure 1 Workflow of data preparation for network planning

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Methodology (3)

- Export from DSO GIS to a central database GeoJSON format
- Data extracted from OSM with the help of QGIS and PostGIS
- Extracted roads and highways are used as new possible routes
- Merging the data from multiple sources and GIS tools
- Creating of shortest path matrix matrix with shortest distance between each pair of substations
- Tested network is part of Zagreb's distribution network

Data preparation (1)

- Substation attributes:
 - Geometry: center of the substation's area
 - Name: name of the substation
 - ID: unique key of the substation
 - Power: summed power of all installed transformers
 - Voltage: nominal voltage of the substation
- Powerlines attributes:
 - Geometry: coordinates of the line object
 - Name: label of the powerline
 - ID: unique key of the powerline
 - ID TS1: ID of the substation at the beginning of the powerline
 - ID TS2: ID of the substation at the end of the powerline

Data preparation (2)

- All elements, except substations and powerlines are disregarded
- Creating CADDiN input files with Python script:
 - .ts information about substation, name, nominal power and coordinates
 - .t file information about costs of connecting substations, depending on the existence of powerlines and routes
 - m file information about the material of which powerlines are made
 - p file information about the section of powerlines
 - .d_s file length (meters) and section (mm²) ratio

Data preparation (3)

Figure 2 Initial network before optimization

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Network Planning Using Genetic Algorithms (1)

- The complexity of distribution network planning increased over the past couple of decades
- Change from passive networks with unidirectional flow to active distribution networks with bidirectional power flow
- Genetic algorithms are part of evolutionary algorithms
- Computational models based on behavior that can be found studying species in the nature

Network Planning Using Genetic Algorithms (2)

- Only stronger, better adapted individuals, will manage to survive and pass on their genes to succeeding generations
- Similar situation is with algorithms
- Bad solutions are disregarded
- Good solutions are taken in consideration for next iteration or optimal solution
- Selection of initial population is randomized
- It is possible that substations selected for creating a path are geographically far from one another
- Found solutions can be incorrect and therefore time needed for finding an optimal solution can be slow
- Heuristic procedure is added to GA in network planning tool

Parameters of Genetic Algorithms (1)

- Number of generations determines a number of generations in case of divergence
- Number of closest x/0.4 kV substations creates sets of substations that are considered during crossing
- Number of substations closest to the feeding substation 110(30)/x kV – combined with previous parameter, secures quality of heuristic process
- **Intensity selection** determines probability of best chromosome selection

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Parameters of Genetic Algorithms (2)

- Intensity selection selection of 110(30)/x
 kV substations used during pairing of radial connections
- Size of the population directly affects the speed of finding an optimal solution and indirectly on quality and convergence of algorithm
- **Mutation parameter** determines number of generations after which mutation is done

Energy parameters

- Maximal allowed load of ring
- x/0.4 kV substation utilization factor percent value of the substation's installed power at the end of the planning process
- Maximal number of x/0.4 kV substations per ring
- Allowed voltage drop in normal state usually 2% - 8% of nominal voltage
- Allowed voltage drop in emergency state usually 10% 12% of nominal voltage

Cost parameters

- Energy loss price price of energy at the beginning of distribution network, it is used to convert energy loss into money value
- **Power loss price** price of monthly power at the beginning of distribution network, it is used to convert power loss into money value
- Annual load increment calculated with exponential law
- Yearly time of maximal load time in hours when maximal power is used, it is used to calculate the value and the loss of energy in the network

Optimization results (1)

- Functionality is tested on part of the distribution network in Zagreb, Croatia
- The observed network is supplied from the 30/10 kV substation
- Network contains 23 10/0.4 kV substations
- Powerlines and routes defined with their length
- Thermal constraints and maximal currents are defined through section and material

Optimization results (2)

Parameter	Value
Operative voltage	10 kV
Planning period (n)	5 years
Powerlines section	150 mm ²
Cast par longth (CPL) of powerling	300
cost per length (CPL) of powernine	points/m
Annual cost factor (ACF)	5%
Discount rate	1

Table 1 Parameters for calculating cost matrix

Parameter	Value
Energy loss price	0.07 points/kWh
Annual load increment	4%
Yearly time of maximal load	5000 h

Table 2 Cost parameters and their values

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Optimization results (3)

- The output of CADDiN is a proposed scheme of network and report with information about economic and technical results of optimization
- Idea is to determine the range of values of GA parameters in which solutions could be found
- Avoiding divergence, too slow execution of algorithm and finding a solution that is only a local optimum
- Heuristic method

Optimization results (4)

	Value		
Parameter	Scenario	Scenario	Scenario
	1	2	3
Number of generations	1000	20000	70000
Number of closest x/0.4 kV substations	3	5	10
Number of substations closest to 110(30)/x kV	5	10	15
Intensity selection	1.02	1.1	1.15
Size of the population	50	150	250
Mutation parameter	500	200	100
Constraint control	1000	500	200

Table 3 Values of GA depending on scenario

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Optimization results (5)

- Case 1 initial case before optimization
- Cases 2 and 5 scenario 1
- Cases 3 and 6 scenario 2
- Cases 4 and 7 scenario 3
- Difference in the calculation of the cost matrix for multiple cases of the same scenario

Optimization results (6)

- Network is divided in two rings
- Sum of powers of all 10/0,4 substations is 9286 kVA
- Voltage drop in the first ring is larger than in the second because of the total length of the ring

Case	Total cost (m.u.)	Voltage drop (%)
1	6364800	0.088100
2	1705414	0.339821
3	1634040	0.358833
4	1591678	0.351193
5	1744592	0.991797
6	1701016	0.842034
7	1756416	0.972846

Table 4 Total cost of connecting and voltage drop for each scenario

Optimization results (7)

- Due to large number of powerlines, cost of connecting substations is the highest in the initial scenario
- Shorter length of line objects result in the lower cost of connecting substations
- Results of costs of the substations connecting are dependent on parameters of GA
- Voltage drop results are more dependent on the distance between feeding substation and the furthest one

Conclusions (1)

- With the GIS tools development, geographical attributes are being combined with technical and economical parameters
- The developed tool enables easy export of necessary information into common database
- Combination of multiple tools, algorithms and programming languages
- The results analyze the impact of changing values of GA parameters in distribution network planning

Conclusions (2)

- Further development of existing tool, new studies and tests, other network configurations
- The main idea behind creating a central database is to build multiple smart distribution network tools using a unified set of data
- Future research will also strive to extend the developed CADDiN tool to capture operational aspects and decisions

Acknowledgments

 Project funded by Croatian Science Foundation (HRZZ) and Croatian Distribution System Operator (HEP ODS) supported by project IMAGINE – Innovative Modelling and Laboratory Tested Solutions for Next Generation of Distribution Networks and supported by the China-Croatian Science and Technology Exchange Program Basic Research on Urban Flexible Multi-Energy System under project FUTURE – Flexible Urban Systems in Multi-Energy Environment

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku

Thank you for your attention!

tomislav.antic@fer.hr

Fakultet elektrotehnike i računarstva - Zavod za visoki napon i energetiku