

Advanced Sensors and Monitoring Techniques for the Optimization of Coal and Biomass Fired Power Plants

YAN YONG (闫 勇)

Background

- Pulverised fuel flow metering
- On-line particle sizing
- Flame stability monitoring
- On-line fuel tracking
- Flame imaging
- Summary

Background

- Power generation organisations are constantly seeking new ways of improving combustion efficiency and profitability.
- Environmental legislations are becoming increasing stringent.
- A diverse range of fuels and fuel blends including biomass are fired at coal fired power plants.
- Many power stations are operated under variable load as per electricity demand.
- Carbon Capture and Storage (CCS) systems are being implemented in many countries.
- New monitoring and measurement techniques have an important part to play in response to these changes.

Monitoring Challenges at Coal and Biomass Fired Power Plants

Coal and Biomass Fired Power Plant

Pulverised Fuel Flow Metering

On-Line Particle Sizing

Pulverised Fuel Flow Metering

Trials on 350MW Coal-Fired Power Plant

On-Line Particle Sizing

Flame Stability Monitoring

On-Line Fuel Tracking

Coal B

Coal A

• Flame ignition profile

0.8MWth

0.9MWth

1.0MWth

1.1MWth

Flame temperature distribution

0.8MWth

0.9MWth

1.0MWth

>1566 >1545 >1523 >1501 >1480 >1458

> >1437 >1415

T<u>emp (°C</u>) >1609 >1588

1.1MWth

Fine Coal

Coarse Coal

Variable Particle Size (Coal B 62.9kg/h, 3.2% O₂)

Oxyfuel Flames - Russian coal

Images for different simulated recycle rates under low O₂ setting

62%rr, Total flow 477.8kg/h (time: 12:32, 30-10)

65%rr, Total flow 523.0kg/h (time: 15:18, 29-10)

(time: 15:05, 29-10)

68%rr, Total flow 577.7kg/h 72%rr, Total flow 669.6kg/h 75%rr, Total flow 757.1kg/h Sec. flow 322kg/h@39.4%O2 Sec. flow 368kg/h@34.8%O2 Sec. flow 422kg/h@30.5%O2 Sec. flow 513kg/h@25.5%O2 Sec. flow 600kg/h@22.1%O2 (time: 14:18, 29-10)

Images for different simulated recycle rates under high O₂ setting

62%rr, Total flow 487.5kg/h Sec. flow 332kg/h@41.7%O₂ (Time: 12:54, 30-10)

65%rr, Total flow 532.9kg/h 68%rr, Total f. 590.5kg/h 72%rr, Total f. 681.9kg/h Sec. flow 379kg/h@37.1%O2 Sec. flow 435kg/h@32.9%O2 Sec. flow 527kg/h@28.0%O2 (time: 12:01, 30-10) (time: 14:35, 29-10) (time: 14:48, 29-10)

75%rr, Total f. 772.1kg/h Sec. flow 616kg/h@24.5%O₂ (time: 13:58, 29-10)

Biomass & Coal

The imaging fibre probe was inserted through the existing sighting tubes of Burners 1A5, 1C2, 1C3 and 1E5.

Imaging of Flame Radicals

Industrial Trials

1MWth Combustion Test Facility, E.ON UK

Tilbury Power Station

Summary

- A range of new sensors and instruments are available for the optimization of coal and biomass fired power plants.
- Embedded digital signal and image processing plays an important part.
- Making the sensors and instruments cost-effective, robust and reliable has been a challenge.
- Good progress has been made in 2D and 3D flame imaging.
- Further trials on full-scale power stations are being undertaken to assess the operability and effectiveness of the new sensors and instruments.
- Significant research in biomass/air two-phase and biomass/coal/air three-phase flow is required.