On Voltage Stability Solutions

Zagreb, Croatia, October 12, 2012

Miroslav Begović, FIEEE President-Elect, IEEE Power and Energy Society Professor, Chair, Electric Energy Research Group School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta Georgia, USA

Motivation: Incidence of Large Power System Disturbances

- NERC (and Other) Data Indicate Some Regularity in Occurrence of Large Disturbances
- Complex Protection Schemes are Becoming Increasingly Common Tools for Mitigation of Such Disturbances

Source: http://www.people.cornell.edu/pages/khs7/research/journal.htm

Customer Aversion to Energy Disruptions

Linearization of Power Flow Equation

 $g(\xi, V, \lambda) = 0$

 $g_{\xi} d\xi + g_V dV + g_{\lambda} d\lambda = 0$

 $\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \begin{bmatrix} d\xi \\ dV \end{bmatrix} = -\begin{bmatrix} g_{1_{\lambda}} \\ g_{2_{\lambda}} \end{bmatrix} d\lambda$

Voltage Collapse

Example: Voltage Stability

dQ_G/dQ_L Criterion

$$Q_{\rm G}(V) = \frac{E^2}{X} - \frac{EV}{X}\cos\delta$$

$$Q_{\rm G}^2(V) - \frac{E^2}{X} Q_{\rm G}(V) + P_{\rm L}^2(V) + \frac{E^2}{X} Q_{\rm L}(V) = 0$$
$$Q_{\rm L}(V) = -\frac{Q_{\rm G}^2(V)}{\frac{E^2}{X}} + Q_{\rm G}(V) - \frac{P_{\rm L}^2(V)}{\frac{E^2}{X}}.$$

Static Bifurcation Model

Planning Options for Prevention of VC

	Cost (\$)	Time to Implement
Additional Generation	Tens to Hundred Millions	Years
Additional Transmission Lines	Tens to Hundred Millions	Over 10 years
Dynamic Reactive Power (e.g. FACTS)	Tens of Millions	1~ 3 years
Comprehensive Load Shedding Scheme Is it really an option???	Few Millions (depending on requirements and complexity)	1-2 years

Tools Against Voltage Instability

- Generation Redispatch
- Demand Side Management
- Control of Tap Changers
- Reactive Power Support
 - **–Switched Sources**
 - **Dynamic Sources**
- Distribution Voltage Control
- Rolling Brownouts
- UF Load Shedding
- UV Load Shedding
- Adaptive UV Load Shedding
- Wide-Area Analysis Based Load Shedding

Emergency Controls

- Tap Blocking: deactivation of tap action
- Tap Reversing: controlling the primary voltage
- Tap Locking: deactivating tap to a chosen value
- Voltage Reduction: lowering distribution voltage
- Load Shedding: rejection of a percentage of load

TEPCO UVLS Criteria

- UVLS installed to prevent cascading following severe contingencies like multiple outages during extreme weather and heavy load (outside planning and operation criteria)
- 500kV voltages measured
- Based on 3 out of 4 decision making logic to avoid unwanted operation
- Decisions are transferred to substation protection terminals

Under-voltage load shedding

Issues with voltage as an indicator of voltage instability: #1: UV relay trips unnecessarily #2: UV relay fails to trip

Voltage Instability Predictor*

- Maximal power transfer ⇔
 |Z_{app}| = |Z_{Thev}| is point of collapse
- Measuring the proximity to instability improvement to UV LS
- Corridor version: Two PMUs on the both side of the line
 - More accurate Thevenin equivalent

* K. Vu and D. Novosel, "Voltage Instability Predictor (VIP) - Method and System for Performing Adaptive Control to Improve Voltage Stability in Power Systems," US Patent No. 6,219,591, April 2001.

Monitoring Instability---Example 2

Tracking Performance on Tap Changes Near Voltage Collapse Region

Conclusions

- Balanced approach to fixing the system as a whole by implementing various planning, operations, and maintenance measures to reduce probability of future outages
 - Weigh the costs, performance and risks associated with each measure
- A comprehensive defense plan using SIPSs significantly increases system reliability
- Use of local techniques may create a tradeoff with accurate solutions, but represents a fallback position for the situations when communication network fails or other circumstances prevent normal (or fast enough) operation of the SIPS
- Additional research is needed to get the most out of local measurement based techniques

Stability Area and Load Characteristics

Source: Machovsky, Bialek, Bumby, "Power System Dynamics", Jonn Wiley, 2008

VIP Tracking Performance

0.1

