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Motivation: Incidence of Large 
Power System Disturbances 

• NERC (and Other) 
Data Indicate 
Some Regularity 
in Occurrence of 
Large 
Disturbances 

 
• Complex 

Protection 
Schemes are 
Becoming 
Increasingly 
Common Tools for 
Mitigation of Such 
Disturbances 

Source: http://www.people.cornell.edu/pages/khs7/research/journal.htm 



Customer Aversion to Energy Disruptions 



Linearization of Power Flow Equation 
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Voltage Collapse 
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SMALL LOAD INCREASE 

+ 
NEAR SINGULAR JACOBIAN MATRIX 
         = 

VERY LARGE VOLTAGE (OR ANGLE) GRADIENTS 
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Example: Voltage Stability 



dQG/dQL Criterion 

Source: Machovsky, Bialek, Bumby, “Power System Dynamics”, John Wiley, 2008 

System Stability 



Static Bifurcation Model 

STABLE EQUILIBRIUM 

UNSTABLE EQUILIBRIUM 

UNDER HEAVY LOAD 
OR FOLLOWING A SEVERE 
CONTINGENCY, BOTH 
EQUILIBRIA COALESCE  
INTO A SINGLE POINT  
(STATIC BIFURCATION) 



Cost ($) Time to 
Implement 

Additional Generation Tens to Hundred 
Millions 

Years 

Additional 
Transmission Lines 

Tens to Hundred 
Millions 

Over 10 years 

Dynamic  Reactive 
Power (e.g. FACTS) 
 

Tens of Millions 
 

1~ 3 years 

Comprehensive Load 
Shedding Scheme 
Is it really an 
option??? 

Few Millions 
(depending on 
requirements 

and complexity) 

1-2 years 

Planning Options for Prevention of VC 

Source: Jean-Marie Gagnon, Damir Novosel 



Tools Against Voltage Instability 
• Generation Redispatch 
• Demand Side Management 
• Control of Tap Changers 
• Reactive Power Support 

–Switched Sources 
–Dynamic Sources 

• Distribution Voltage Control 
• Rolling Brownouts 
• UF Load Shedding 
• UV Load Shedding 
• Adaptive UV Load Shedding 
• Wide-Area Analysis Based Load Shedding 



Emergency Controls 

• Tap Blocking: deactivation of tap action 
• Tap Reversing: controlling the primary voltage 
• Tap Locking: deactivating tap to a chosen 

value 
• Voltage Reduction: lowering distribution 

voltage 
• Load Shedding: rejection of a percentage of 

load 

Source: “Comparison and Combination of Emergency Control Methods for Voltage Stability”, Vournas, IEEE PES GM 2004 



TEPCO UVLS Criteria 

• UVLS installed to prevent 
cascading following severe 
contingencies like multiple 
outages during extreme weather 
and heavy load (outside 
planning and operation criteria) 

• 500kV voltages measured 
• Based on 3 out of 4 decision 

making logic to avoid unwanted 
operation 

• Decisions are transferred to 
substation protection terminals 

500kV Main Grid 

MJ MJ MJ 

LS 

LS 

Communication; Voltage 
collapse detection result 

Communication; Measured 
500kV voltages 

MJ: Monitoring and Judging Unit 
LS: Load shedding Unit 

Sub-Station 
275,154/66 

27kV,154kV 
radial network 

MJ 

Sub-Station 
275,154/66 



Under-voltage load  shedding  
x 

Under-voltage  
relay operates 

#1 

#2 

r 

Voltage  
instability region 

Issues with voltage as an indicator of voltage 
instability: 

#1: UV relay trips unnecessarily 
#2: UV relay fails to trip 



Voltage Instability Predictor*  

* K. Vu and D. Novosel, “Voltage Instability Predictor (VIP) - Method and System for Performing Adaptive Control to Improve Voltage Stability in Power Systems,” US Patent No. 6,219,591, April 2001. 
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• Maximal power transfer  ⇔ 
|Zapp | = |ZThev | is point of collapse 

• Measuring the proximity to instability - 
improvement to UV LS 

• Corridor version: Two PMUs on the both 
side of the line  

– More accurate Thevenin equivalent 
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Monitoring Instability---Example 2 

On-line 
monitoring 
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Tracking Performance on Tap Changes 
Near Voltage Collapse Region 
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Conclusions 
• Balanced approach to fixing the system as a whole by 

implementing various planning, operations, and maintenance 
measures to reduce probability of future outages  

– Weigh the costs, performance and risks associated with each measure 

• A comprehensive defense plan using SIPSs significantly 
increases system reliability 

• Use of local techniques may create a tradeoff with accurate 
solutions, but represents a fallback position for the situations 
when communication network fails or other circumstances 
prevent normal (or fast enough) operation of the SIPS 

• Additional research is needed to get the most out of local 
measurement based techniques 



Stability Area and Load Characteristics 

Source: Machovsky, Bialek, Bumby, “Power System Dynamics”, John Wiley, 2008 



VIP Tracking Performance 
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