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Background

® High penetrated renewable energy

I Wind 2400GW ; Solar 2700GW
= 30 f---- R R N - R I -
G) L e e e
Q | | | | | ‘ ! ! ! : e
o ! ! ! I ! I ! ! A
— 257 == == === - N B el Al A B el depiaie e ity
= A [Wmd 1200GW ; Solar 1000GW Y-S
4: 20 T T ! i/ "" 1
o ! ! ( ! P 3 ‘ B ‘ ‘
o ! i . ' | 2050: (Basic Scenario)
S A7 Wind 1000GW ; Solar 1000GW.
48 | ! !
S R R R 2 ffr--------------+----+----4----7----¢----?7TTTTT=H5--
© ; ! > 'r 2030: (Basic Scenario) i | |
© o ad a Wind 4OOGW Solar 4OOGW
m g I I
c ‘ i ‘ |

I\fb"bé%fé\q?‘
S S S S S SR SIS S S S S
Year

Wind —e— PV&CSP

« The uncertainty and intermittency of renewable energy complicate
the way of real-time power balancing and bring great challenges
to the transmission expansion planning.
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B High renewable penetration diversifies the operation scenarios

Distribution of operation states under different wind penetration

(Case of Qinghai Province)
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Background

» Massive renewable energy scenarios are supposed to be
considered in transmission planning with high renewable
penetration.

» Massive scenarios cause gross computational burden.
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Background

B Scenario reduction method

Scenario Clustering Methods

(
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i_> The reduction changes the original model.

Scenario Selecting Criterions

« connectivity-based

(e.g. hierarchical clustering)

- centroid-based

(e.g. k-means clustering)

« model-based

(e.g. Gaussian mixture model (GMM))
« density-based clustering

(e.g. DBSCAN)

1 > Feature-based method, ignore the differences between problems

« Sun, M., etal. "An objective-based scenario selection method for transmission network expansion planning with
multivariate stochasticity in load and renewable energy sources.” Energy, vol.145 (2018): 871-885.
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Background

B What we do

O Find a way to incorporate more scenarios under the
condition that the problem is tractable.

O Cluster the scenarios according to their contributions
to solution process.

O Change the original problem as less as possible to
minimize the impacts to the optimal solution.
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Problem statement and solution

B The two-stage TEP model
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« The first stage determines the
investment decisions;

« The second stage is the operation
simulation for each scenario;

« The scenarios indicate the hourly RE
output and load level.

P™ <P < P™ Vg,Vs




Problem statement and solution

B Benders decomposition

Original Model « Benders decomposition
splits the model into two
parts: master problem and

Benders Decomposition
sub problems.

« Feasible investment
decisions are obtained by

Master Problem oeparate Sub-problem solving master problem
Constraints Investment s . = . J . P
with only BVs Decisions HEEE - With the investment
H Bl B B determined, sub problems
Benders Cut 1 B | [ ] corresponding to the

scenarios can be solved

separately.
Benders Cut Benders Cut P y

« Benders cut shows how the

Benders Cut k sub problems influent the
process.
Lower Upper
Bounder Bounder

B



Problem statement and solution

B Benders decomposition
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» Expression of benders cut:
ciho,x + zns * (bg + EO)AL z
S

« Benders cut is formed using the Lagrange
multiplier vectors ) of sub problems.

« The differences of sub problems lie in the
right-hand-side parameters.

« To cluster the scenarios according their
impacts on the iteration, we need to
understand how the variations of right-

hand-side parameters impact 4.



« The theory of MPLP presents the
influence of variations in multiple
parameters on the optimal solution

« MPLP is based on the concept of
Critical Region (CR). CR is a
polyhedron in the scenario hyperspace

b0+E9=[ ] [b°+EB]

= [B",NT]
bY + Ey0

CR={6|(NB™1Eg —Ey)8 > b)) — NB71b{

 The scenarios in the same Critical
Region share the same 4.

« T.Gal and J. Nedoma, “Multiparametric linear programming,” Management Science, vol. 18, no. 7, pp. 406-422, 1972.
« F. Borrelli, A. Bemporad, and M. Morari, “Geometric algorithm for multiparametric linear programming,” Journal of
optimization theory and applications, vol. 118, no. 3, pp. 515-540, 2003.




B The overall framework

Binary Variable

Constraints

with only BVs Typical Day 1

L]

Coefficient
Matrix of
BVsin
Scenario
Constraints

Master Problem

Constraints
with only
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Continuous Variables
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Investment
Decisions = -
Dynamic - - |
Scenario - -
Clustering Solve by Sgarch
Commercial Equlval'ent
Scenarios

Solver

Make Benders Cut using Lagrange multipliers

Once a sub problem is solved,
then a corresponding critical
region can be defined.

For the next sub problem, we
judge whether it belongs to the
existing critical regions or not.

If so, the corresponding 4 can be
obtained directly. If not, we solve
it with commercial solver and
define a new critical region

Thus, dynamic scenarios
clustering (DSC) is embedded
into the traditional Benders
decomposition (TBD).




Case study

B Graver's 6-node test system with 8760 scenarios

» Time consumption

M Sub problem B Master problem M Scenario allocation M CR definition ™ Others

0.36%
3%

6%

Reduced to 6% 15.6s
15%
98.49%
TBD DSC
traditional Benders decomposition dynamic scenarios clustering

« The investment results are the same because the model are the same.

« R. Villasana, L. Garver, and S. Salon, “Transmission network planning using linear programming,” |EEE transactions on
power apparatus and systems, no. 2, pp. 349-356, 1985.
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> Network topology » Comparison of results and time
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575.722 2-6,11-13, 11- 595680

14, 12-23, 15-
DSC 157.718 21 31558

The investment results are the same.

The proposed method reduces the
time to 27.4%
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B Merging CRs by Adjustable Slacking

R={0](NB™E, ~E, )6 >b)' —NBb| CR = J{01(NB"E; —E, )6 > b ~NB"'b;
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« With the strict CR definition, lots of small
CRs exist in the hyperspace.

o o 9
(S < BN

« A small number of scenarios allocate in
the small CRs.

o 9
w
T

Wind power output(p.u.)

« Introduce the limitation coefficient (o) in
e 05 cos the expression to expand the bounders.

Load level (p.u.)

o
a

o

.



B I[EEE RTS-79 test system

» Comparison of results and time consumption

Time (s) Investment | Number of nﬁ‘r’neI;:?if
decisions |calling Cplex
CRs
N/A

575.722 595680
DSC 2-6,11-13, 11-
(@=0) 127718 14/12-23,15. 31558 370.76
21
(a‘ffo) 85.698 18206 185.28

« The investment results are still the same.
« The number of CRs is decreased by 50%.
« The modified method further reduces the time to 14.9%




B I[EEE RTS-79 test system

> Sensitivity analysis on limitation coefficient a

= Sub problem

mmm Scenario allocation mmCR definition
mm Master problem Others

175

150 | decisions change when

a is large than 50
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« Alarger a leads to shorter computation time but larger relative error.

« When a is greater than 50, the optimal investment decisions change.
« Note that the computation time decreases rapidly with small o, but the

speed of decreasing slows down with increasing a.
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B Guizhou 230-bus system

1+ 230 buses, 275 corridors and 21 candidate !
' branches :
'« RE penetration is 43% :
- 17520 scenarios are integrated into the model.

e Investment Number of nﬁ‘r,nelr::?if
decisions calling Cplex CRs
TBD N/A

11307.490 2610480
bsc 21-66, 98-227,
20 3081.228  53-228,94-229, 183688 616.40
(a=0) 69-230, 157-193,
ooy 1373755 1300 G160 409.29

« The investment results are still same.
« The proposed method reduces the time to 12.15%

« This method is applicable to realistic-sized systems.
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O Embed the dynamic scenario clustering into the
traditional benders decomposition

O The time consumption can be reduced to around 15%
for high renewable penetrated system while keep the
optimal solution unchanged.

O Note that the proposed method is not an alternative
for the scenario reduction method. The two can be
combined to deal with TEP problem with much more
scenarios.
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Thank you for your attention




