

Incorporating Massive Scenarios in Transmission Expansion Planning with High Renewable Penetration

Zhenyu Zhuo Department of Electrical Engineering

High penetrated renewable energy

• The uncertainty and intermittency of renewable energy complicate the way of **real-time power balancing** and bring great challenges to the **transmission expansion planning**.

High renewable penetration diversifies the operation scenarios

(國) 清華大学

Distribution of operation states under different wind penetration (Case of Qinghai Province)

清华大学智慧能源实验室

- Massive renewable energy scenarios are supposed to be considered in transmission planning with high renewable penetration.
- > Massive scenarios cause gross computational burden.

· 清華大学 Elle

Scenario reduction method

connectivity-based

(e.g. hierarchical clustering)

centroid-based

(e.g. k-means clustering)

model-based

(e.g. Gaussian mixture model (GMM))

density-based clustering

(e.g. DBSCAN)

Feature-based method, ignore the differences between problems

> The reduction changes the original model.

• Sun, M., et al. "An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources." *Energy*, vol.145 (2018): 871-885.

What we do

- □ Find a way to incorporate more scenarios under the condition that the problem is tractable.
- Cluster the scenarios according to their contributions to solution process.
- □ Change the original problem as less as possible to minimize the impacts to the optimal solution.

The two-stage TEP model

First Stage	Second Stage			
Investment Cost	+ Expected Operating Cost			
Couple Constrains of Line Investment Decision Variables	Scenario 1 Operation Simulation	Scenario 2 Operation Simulation	•••	Scenario x Operation Simulation

- The first stage determines the investment decisions;
- The second stage is the operation simulation for each scenario;
- The scenarios indicate the hourly RE output and load level.

$$\begin{split} \min \sum_{lc \in \Omega_{lc}} C_{lc}^{inv} x_{lc} + \sum_{s \in \Omega_s} \pi_s \sum_{g \in \Omega_g} C_g^{op} P_{g,s} \\ s.t. \sum_{lc \in \Omega_{lc}^n} f_{lc,s} + \sum_{le \in \Omega_{le}^n} f_{le,s} + L_{n,s} = \\ \sum_{g \in \Omega_g^n} P_{g,s} + \sum_{r \in \Omega_r^n} P_{r,s} + Ls_{n,s} \forall n, \forall s \\ f_{le,s} - B_{le,s} \left(\theta_{le,s}^i - \theta_{le,s}^j \right) = 0 \quad \forall le, \forall s \\ \left| f_{lc,s} - B_{lc,s} \left(\theta_{lc,s}^i - \theta_{lc,s}^j \right) \right| \leq T(1 - x_{lc}) \quad \forall lc, \forall s \\ \left| f_{le,s} \right| \leq f_{le}^{\max} \quad \forall le, \forall s \\ \left| f_{lc,s} \right| \leq x_{lc} f_{lc}^{\max} \quad \forall lc, \forall s \\ P_g^{\min} \leq P_{g,s} \leq P_g^{\max} \quad \forall g, \forall s \\ 0 \leq Ls_{n,s} \leq L_{n,s} \quad \forall n, \forall s \\ x_{lc} \in \{0, 1\} \end{split}$$

Benders decomposition

 Benders decomposition splits the model into two parts: master problem and sub problems.

(國) 消華大学

- Feasible investment decisions are obtained by solving master problem.
- With the investment determined, sub problems corresponding to the scenarios can be solved separately.
- Benders cut shows how the sub problems influent the process.

9

Benders decomposition

$$\begin{split} \min \sum_{lc \in \Omega_{lc}} C_{lc}^{inv} x_{lc} + \sum_{s \in \Omega_{s}} \pi_{s} \sum_{g \in \Omega_{g}} C_{g}^{op} P_{g,s} \\ s.t. \sum_{lc \in \Omega_{lc}^{n}} f_{lc,s} + \sum_{le \in \Omega_{le}^{n}} f_{le,s} + L_{n,s} = \\ \sum_{g \in \Omega_{g}^{n}} P_{g,s} + \sum_{r \in \Omega_{r}^{n}} P_{r,s} + Ls_{n,s} \forall n, \forall s \\ f_{le,s} - B_{le,s} \left(\theta_{le,s}^{i} - \theta_{le,s}^{j} \right) = 0 \quad \forall le, \forall s \\ \left| f_{lc,s} - B_{lc,s} \left(\theta_{lc,s}^{i} - \theta_{lc,s}^{j} \right) \right| \leq T(1 - x_{lc}) \quad \forall lc, \forall s \\ \left| f_{le,s} \right| \leq f_{le}^{\max} \quad \forall le, \forall s \\ \left| f_{lc,s} \right| \leq x_{lc} f_{lc}^{\max} \quad \forall lc, \forall s \\ P_{g}^{\min} \leq P_{g,s} \leq P_{g}^{\max} \quad \forall g, \forall s \\ 0 \leq P_{r,s} \leq P_{r,s}^{\max} \quad \forall n, \forall s \\ x_{lc} \in \{0, 1\} \end{split}$$

Sub problem in matrix form

min cy
s.t.
$$Ay \ge b_0 + E\theta : \lambda$$

 $y \in R^n$

(國) 清華大学

> Expression of benders cut:

$$c_{inv}^T x + \sum_{s} \pi_s * (b_0 + E\theta)\lambda \le z$$

- Benders cut is formed using the Lagrange multiplier vectors λ of sub problems.
- The differences of sub problems lie in the right-hand-side parameters.
- To cluster the scenarios according their impacts on the iteration, we need to understand how the variations of right-hand-side parameters impact λ.

10

Multiple parametric linear programming (MPLP)

Expression of sub problem:

 $\min cy$ s.t. $A \neq b_0 + E\theta \cdot \lambda$ $v \in R^n$

- The theory of MPLP presents the influence of variations in multiple parameters on the optimal solution
- MPLP is based on the concept of Critical Region (CR). CR is a polyhedron in the scenario hyperspace

$$A^{T} = [B^{T}, N^{T}] \qquad b_{0} + E\theta = \begin{bmatrix} b_{B} \\ b_{0}^{N} \end{bmatrix} = \begin{bmatrix} b_{0}^{B} + E_{B}\theta \\ b_{0}^{N} + E_{N}\theta \end{bmatrix}$$

 $\mathsf{CR} = \{\theta | (NB^{-1}E_B - E_N)\theta > b_0^N - NB^{-1}b_0^B\}$

- The scenarios in the same Critical Region share the same λ.
- T. Gal and J. Nedoma, "Multiparametric linear programming," Management Science, vol. 18, no. 7, pp. 406–422, 1972.
- F. Borrelli, A. Bemporad, and M. Morari, "Geometric algorithm for multiparametric linear programming," Journal of optimization theory and applications, vol. 118, no. 3, pp. 515–540, 2003.

The overall framework

 Once a sub problem is solved, then a corresponding critical region can be defined.

清華大

- For the next sub problem, we **judge** whether it belongs to the existing critical regions or not.
- If so, the corresponding λ can be obtained directly. If not, we solve it with commercial solver and define a new critical region

Thus, dynamic scenarios clustering (DSC) is embedded into the traditional Benders decomposition (TBD).

■ Graver's 6-node test system with 8760 scenarios

Time consumption

Sub problem Master problem Scenario allocation CR definition Others

- The investment results are the same because the model are the same.
- R. Villasana, L. Garver, and S. Salon, "Transmission network planning using linear programming," IEEE transactions on power apparatus and systems, no. 2, pp. 349–356, 1985.

IEEE RTS-79 test system

Network topology

Comparison of results and time consumption

Method	Time (s)	Investment decisions	Number of calling Cplex
TBD	575.722	2-6,11-13, 11-	595680
DSC	157.718	14, 12-23, 15- 21	31558

- The investment results are the same.
- The proposed method reduces the time to 27.4%

Wind penetration is over 50% The number of critical regions is over 370

Merging CRs by Adjustable Slacking

$$\mathbf{CR} = \left\{ \boldsymbol{\theta} \mid \left(NB^{-1}E_B - E_N \right) \boldsymbol{\theta} > b_0^N - NB^{-1}b_0^B \right\}$$

- With the strict CR definition, lots of small CRs exist in the hyperspace.
- A small number of scenarios allocate in the small CRs.
- Introduce the limitation coefficient (α) in the expression to expand the bounders.

IEEE RTS-79 test system

> Comparison of results and time consumption

Method	Time (s)	Investment decisions	Number of calling Cplex	Average number of CRs
TBD	575.722		595680	N/A
DSC (α=0)	157.718	2-6,11-13, 11- 14, 12-23, 15-	31558	370.76
DSC (α=40)	85.698	21	18206	185.28

- The investment results are still the same.
- The number of CRs is decreased by 50%.
- The modified method further reduces the time to 14.9%

IEEE RTS-79 test system

Sensitivity analysis on limitation coefficient α

- A larger α leads to shorter computation time but larger relative error.
- When α is greater than 50, the optimal investment decisions change.
- Note that the computation time decreases rapidly with small α , but the speed of decreasing slows down with increasing α .

Guizhou 230-bus system

- 230 buses, 275 corridors and 21 candidate
- branches
- RE penetration is 43%
- 17520 scenarios are integrated into the model.

Method	Time (s)	Investment decisions	Number of calling Cplex	Average number of CRs
TBD	11307.490	21 66 00 227	2610480	N/A
DSC (α=0)	3081.228	53-228, 94-229, 69-230, 157-193.	183688	616.40
DSC (α=30)	1373.755	193-220, 24-190	616.40	409.29

- The investment results are still same.
- The proposed method reduces the time to 12.15%
- This method is applicable to realistic-sized systems.

- Embed the dynamic scenario clustering into the traditional benders decomposition
- The time consumption can be reduced to around 15% for high renewable penetrated system while keep the optimal solution unchanged.
- Note that the proposed method is not an alternative for the scenario reduction method. The two can be combined to deal with TEP problem with much more scenarios.

Thank you for your attention