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e Motivation / Introduction
e Basic noise- and signhal (speech) power spectrum estimation
e Estimating noise-free speech given noise/speech models:
— Linear estimators: Wiener filter in various flavors
— General estimators: Wiener filter and other estimators
= Probabilistic estimation of noise and speech models

e Performance
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fxriy Problem Definition

e Signal corrupted by additive noise
— Y* = XM+ wt
— X¥ and WX statistically independent

- Estimate noise-free signal X ‘
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fxrHy Motivation for Enhancement

e Plain old telephone service (POTS)

— Generally low acoustic background noise level
e Phone booth
 Home

e Modern networks

— Often high acoustic background noise level
e Mobile phones
e Computer as phone

e Complication:
— Not difficult to improve SNR

— Difficult to obtain enhanced signal that sounds more
pleasant than noisy signal
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{xo Location in Network

e |Input based
— Obvious location
— Best performance, in commercial use

A 4

— enhancer encoder decoder ——

e Qutput based
— Quality resides with purchaser of device

enhancer —

A 4

—— encoder decoder
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w1 Single- and Multi-Channel Enhancement

e Single-channel
— Beneficial if no control of input device
— Inexpensive
— Now common

e Multi-channel

— Adaptive noise cancellation
e Assumes noise reference available

— Adaptive beam forming
e Physical model of environment

— Blind source separation
e No physical model
e Assumes convolutive mixing, independent sources
e Qutputs are filtered versions of original
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§KTHY Single-Channel Architecture

e General algorithmic steps

1. Estimate noise and speech model (variance, power

spectrum / AR parameters)

e May exploit prior knowledge of signal structure

2. Estimate clean speech signal X
e Exploit speech or speech/noise model

Yk
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estimate
noise and speech
models or spectra
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prior knowledge
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< Motivation / Introduction
e Basic noise- and speech power spectrum estimation
e Estimating noise-free speech given noise/speech models:
— Linear estimation: Wiener filter in various flavors
— General estimation: Wiener filter and other estimators
= Probabilistic estimation of noise and speech models

e Performance

wbk 06/02/22 8



1 \oice-Activity Based Noise-PS Estimation

e Objective: to estimate power spectrum of noise PVlJ

e Algorithm for each block:

1. Voice activity detection
Based on spectral slope, signal power, autocorrelation, etc.

2. If no speech present compute periodogram
3. Average periodograms over suitable interval
4. Result is power spectral estimate of noise P,

e Main weaknesses:

— Voice activity detection notoriously unreliable
e Operates on noisy signal

— Assumes noise is stationary

wbk 06/02/22 9



w1 Noise PS Estimation by Minimum Statistics

o R. Martin, Aachen -> Bochum

e QObjective: to estimate power spectrum of noise Py

e Algorithm for each block:

Compute periodogram [(FY*)(M)[* of noisy signal Y

Smooth periodogram across time (and frequency)

Add new periodogram to stored set of last L periodograms
Remove oldest periodogram from set of last L periodograms
For each freq bin, find min value in periodogram set

Compensate for estimation bias, get P\,\i;

o aswheE

e Main weakness:
— High computational effort

— Requires near-stationarity of noise

e Increase set cardinality -> more reliable but slower
adaptation
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w1 Noise PS Estimation by Minimum Statistics
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o Frame = 15 ms, 100 frames=1.5 s, k=25~ 800 Hz

- Noise power spectral density estimation based on optimal smoothing and minimum statistics
Martin, R.; Speech and Audio Processing, IEEE Transactions on,Volume 9, Issue 5, July 2001 Page(s):504 - 512
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4] Quantile Based Noise PS Estimation

EEEEEEEEE

. _ _ k
e Objective: to estimate power spectrum of noise Ry

e Algorithm for each block:
1. Compute periodogram (FYy )(M)® of noisy signal y"
2. Add new periodogram to stored set of last L pgrams
3. Remove oldest periodogram from set of last L pgrams _
4. For each freqg bin, find gt" quantile in periodogram set: Pv\l;

e Main weakness:
— High computational effort

— Requires near-stationarity of noise
e increase set cardinality -> more reliable but slower adaptation

12
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sl Quantile Based Noise PS Estimation
{ e

s

Quantile based noise estimation for spectral subtraction and Wiener filtering
Stahl, V.; Fischer, A.; Bippus, R.;Acoustics, Speech, and Signal Processing, 2000. ICASSP '00.

Proceedings. 2000 IEEE International Conference on,Volume 3, 5-9 June 2000 Page(s):1875 -
1878 vol.3
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8] Speech PS Estimation by Subtraction

- Objective: to estimate speech power spectrum Py
e Solution: ad-hoc but simple

e Spectral subtraction (ad hoc):

\/% = max(0,|(Fy*)(m)| —\/%)

e Power spectral subtraction (logical if signals uncorrelated):

Pk (m) = max(0,|(Fy*)(m) | —R¥(m))

- Low signal magnitude: estimates poor == musical noise
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Overview

Motivation / Introduction

Basic noise- and speech power spectrum estimation
Estimating noise-free speech given noise/speech models:
— Linear estimation: Wiener filter in various flavors

— General estimation: Wiener filter and other estimators
Probabilistic estimation of noise and speech models

Performance
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fxry Speech Estimation Problem

= Given A
_ Speech power spectrum  Px
— Noise power spectrum P
— Noisy speech y*

 We want MMSE estimate
argmin E[|X* —v["]=E[X"]
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frri Ad-hoc Noise Suppression

< We have i
— Estimate speech power spectrum _ X
~ Estimate noise power spectrum R
— Noisy speech y"

- We want E[X"]

e Ad-hoc solution: ignore phase, Spectral Subtraction:

> (M)
R (m)
¥ = F" (diag P¥)(diag R*)™ F y*

(FX*)(m) = (Fy*)(m)

e Not based on MMSE criterion but ad-hoc solution is essentially what
we get from Wiener filter
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fxriy Formal Solution: Wiener Filter

e Operator that estimates speech from noisy speech

e Follows from either of two equivalent assumptions:
1. MMSE linear estimate

2. Best estimate if speech and noise have Gaussian
distribution
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frry MMSE Linear Estimator H

e Linear estimate X% = H Y

e MSE that retains some noise:
n = EH(xk+ng)—>2k

_ E{tr[((x”g"vk)—;k) ((Xk+gwk)‘>2k)Hﬂ

= Find optimal linear estimator H
— Assume covariance matrices of R, and R, known
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FKTHE Wiener Filter that Minimizes MSE

why we used the “trace” notation

 MSE criterion:
n =E|tr| (X*+eW" -

S (xk+gwk—HYk)“ﬂ

=E|tr[(H-1)

=tr| (H=DR(H=1)" |+ tr[ (H—eD)R, (H —¢1)" |

+(H=eh)W¥) (H=1)X*+(H —gI)Wk]H}

e Differentiate to H set to zero; solve;

ij

Wiener filter: H =(R, +¢R,) (R, + F\)\,\,)_1
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ol Wiener Filter that Minimizes MS Distortion

k- Y. Ephraim

e Estimation error is XK Xk = X*—HYX
= (H-DX*=HW"
— Distortion: (H —|)Xk

k
— Residual noise: HW

e Alternative: minimize distortion given residual noise (or vice versa)
7 = E|[(H=D)XY| +uE[HW!],

=tr[ (H= DR (H=1)" | +ptr[ (HR,H" |
- Solution: H=R, (R,+uR,)™

— Each 4 corresponds to particular residual noise level
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11 Wiener Filter: Cyclic Approximation

e Discrete Fourier transform is a matrix F
— inverse Fourier transform is F™: that is F'E =1

- Properties of Ry and R,
— stationary signals: Toeplitz and symmetric
— periodic stationary signals: circulant and symmetric
— Fourier T diagonalizes circulant symmetric matrices:
Diagonal of matrix is diag(power spectral density)
e Under periodic approximation:

FHF" =F(R, +&R,)F F"(R, +R,)*F"
= (FR,F" +¢FR,F") (FR,F" + FR F")™
~ (diag P, + ¢ diag R, )(diag P, +diagR, )™
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1 Wiener Filter and Subspace Methods

N Y. Ephraim

e Assume white noise (pre- and post- filter if it is not)

— Then R, scaled identity matrix
- Note

R, =R, +R, =R, +A, =U"A,U+U"R U

e Retain only subspace (spanned by rows’of U )
corresponding to large eigenvalues

— Somewhat ad-hoc

remains diagonal for white noise
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f@] Wiener Filter and Kalman Filter

s

- Kalman filter is a time-varying filter

— Model of signal and noise known; state-space formulation:

x*(n+1) = Ax“(n) + Gv*(n)
y(n) = Bx*(n) + w*(n)

— Objective: find MMSE estimate of x‘(n) given
-+, ¥(n=2),y(n-1),y(n) and state-space model

— Main difference to Wiener filter: causality!
e Causality reduces performance
e Can handle time-variant speech/noise model
e Low number of parameters: perceptual weighing helps

e Kalman smoother: allows delay =>
— Converges to Wiener filter performance
— Speech: small delay gives near-optimal performance

On causal algorithms for speech enhancement Grancharov, V.; Samuelsson, J.; Kleijn, B.;Audio, Speech and Language Processing,
IEEE Transactions on [see also Speech and Audio Processing, IEEE Transactions on] Volume 14, Issue 3, May 2006 Page(s):764 - 773
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e Overview

< Motivation / Introduction

e Basic noise- and speech power spectrum estimation

e Estimating noise-free speech given noise/speech models:
— Linear estimation: Wiener filter in various flavors
— General estimation: ML estimator, Wiener filter, etc.
— Estimation based on distribution of models

= Probabilistic estimation of noise and speech models

e Performance
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finy Side-Step: ML Estimate

e Max likelihood estimate:
R = arg max py (v* | X
= argmax Py, (Y — x| x")
= arg max p,, (y* —x")
k

=Y

e Conclusion: ML speech estimate does not reduce noise!
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ficrny MMSE Estimator

e MMSE estimation:
X< = i K kN2 vk _ ok
R =argmin E[ (X* —v*)?[Y* = y* |
Vk

=E[ X*1y"]

_ .. Xk ple (Xk yk)dxk

:..Xk Pyix (Y IX) Py (X) 1 py (y©)dX"
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fxrHy Gaussian Assumption for PDFs

e Speech and noise have Gaussian distribution:

P, (X" exp(—x“"R;'x" /2)

)= J(27)* det(Ry)

k

exp(—w R'w* /2)

Py (W

) —
J(@7)* det(R,)
k 1

y _ kT Rx -1 k/2
Py (¥) \/(Zﬂ)kdet(Rx+RW)exp( y" (Rx +Ry) "y 12)
e Then:
pu (¥ — %) = . exp(—(y* = XY (R, —Re)(y* —x)/2)

- J@r) det(R, —R,)
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frri MMSE Estimator

e MMSE estimation:
ko - k k2 k /K
X _argmlnE[(X V) Y =y ]
Vk

=E|[ X*|y"|

= [ X pyy (X y*)ax

:..Xk Pyix (Y IX) Py (X) 1 py (y©)dX"

e Next, we work out the argument of the integral
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FKTHE MMSE Estimator: the Gaussian |

e Rewrite density (y“is constant; complete the square):

Pw (yk - Xk)px (Xk)/ pY(yk) =
_(yk _ Xk)T Rvgl(yk N Xk)+ XkT R;lxk

= C exp( > )
—x*T (R + Ry X + 2x TR, T y*
:C'exp( X W W y )
2
_ C'exp(_XkT(R;(l‘l' Rvgl)xk + 2X|(T RV\_/lyk)
2
_ C'exp(_ka (RP+ Ry )X  + 2x T (Ry' + RyD(R + Rvgl)‘leglyk)
2
_Cexp( X R+ Ry - XY,
2
= Py (Zk _Xk)
where:

Zk _ (R)_(l + R\;/l)—la;/l yk _ Rx (RN + Rx )—1 yk _ Rx RY—l yk
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FKTHE MMSE Estimator: the Gaussian |1

e Back to the MMSE estimate:
gk = E[Xk | yk:|
= [xp, (2" = x*)dx"

= [(x* = 2%)p, (2" = x*)dx* + zkj p, (2 — x)dx"

:Zk
=Ry Rv_l yk

e |s linear!
e |s the Wiener filter!
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ficrny MMSE Estimator

e MMSE estimation:
X< = i K kN2 vk _ ok
R =argmin E[ (X* —v*)?[Y* = y* |
Vk

=E[ X*1y"]

_ .. Xk ple (Xk yk)dxk

:..Xk Pyix (Y IX) Py (X) 1 py (y©)dX"
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fKTHY General MMSE Estimator |
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e Variants on criterion:
— Gaussian but MMSE on amplitude only

e Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator, Ephraim,
Y.; Malah, D.;Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Processing], |IEEE

Transactions on, Volume 32, Issue 6, Dec 1984, Page(s):1109 - 1121

0 LOG {(GAIN)

.20 -10 0 0 20
INSTANTANEQUS SNR [-uB]
'Ili-ll

Fig. 6. Gain curves describing (a) MMSE gain function Gyyyse(tx. 7&)
defined by (7) and (14), with {5 = ¢ - 1, (b) “spectral subtraction™
gain function (46) with §= 1, and {c) Wiener gain function & (¥,
Tic) (15) with fg = 7 - 1.
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fKTs Overview MMSE Estimator

e Variants on speech distribution:

— Gaussian but MMSE on ampliktude konly
- Similar effect as estimating X +&W

— Super-Gaussian models
e Gamma distribution of DFT coefficients
e Minor improvement
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e Overview

< Motivation / Introduction

e Basic noise- and speech power spectrum estimation

e Estimating noise-free speech given noise/speech models:
— Linear estimation: Wiener filter in various flavors
— General estimation: ML estimator, Wiener filter, etc.
— Estimation based on distribution of models

= Probabilistic estimation of noise and speech models

e Performance
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fxrHy Distribution of Models

e Model distributions

— Speech/noise models each have probability given
observed data p,,.(0]y")

— The MMSE is averaged over models:
R = argminE[| X * —v* |/ y* |= E[X* | y*]
= XD e (X YY"
Gaussian  _— -ij‘ pXka @(Xkl yk’e) p®|Yk (9| y")dH dxX

\ [ X P o K1Y, 00X p (0] y*)dO

= (R (O)RE(O)Y* Py (0] Y*)dO
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EEEEEEEEE

Codebook of Models |

noisy speech

Poy (4, | y“)

Wiener
filter 1

O

Poy (& | y )

k

y

wbk 06/02/22

Wiener
filter 1

O

O

MMSE
estimate of
clean speech

Poy (@000 | y*)

A 4

Wiener
filter 10000
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EEEEEEEEE

Codebook of Models 11

wbk 06/02/22

Consider a codebook with 1000 speech spectra and 10
noise spectra; Gaussian speech & noise assumption

10.000 speech+noise covariance matrices / spectra
Each combination has a corresponding Wiener filter
Each combination has a probability given the /data

Compute speech estimate as weighted sum of Wiener

filters operating on noisy input

prevents ambiguity
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{1 The Detalls for the Distribution Case

e Gaussian speech assumption:
R =EIX"|y"]

= [ x* Py (x* | y*)dx"

= .'Xk (j leY’®(Xk | yk’e) p®(9k | yk de) ka

T (X Payo (6 1y*,0)0x")

from Gaussian assumption

oy (O1y*)de"
Pyio (Y 16) Pe (6)

[ prio (Y¥10)po (6)d 6

Prio (V" 10) o (6)

dé

N .. (,.Xk pX|Y,®(Xk | y*, 8)dx"

=| (R, (O)R* () Y do
I ( X Y ) Pyo (Y 16) P (0)dO _ must be measured
) (yk 0)p.. (0 or postulated
= [Re ()R, (0) 1 = —do y"

[ pvio (¥ 10) o (0)d 6
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= Model distributions:
R=E| X*|y"]
= [ X Py (X Ty )’
=[x (] Py o (X 1, 0) Do (6 | y*)dB) dx'
=[ ([ X Pay .o 1,000 ) poy (0] y*)dO

e We simply average the estimates

« If each pXW,@(Xk |y,0) corresponds to Gaussian noise
and speech models, then we average the corresponding
Wiener filters!

wbk 06/02/22
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fxTHY MMSE for Distribution of Models

e Still missing:
— The density Pey (6,1 Y")
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Basic noise- and speech power spectrum estimation
Estimating noise-free speech given noise/speech models:
— Linear estimation: Wiener filter in various flavors

— General estimation: Wiener filter and other estimators
Probabilistic estimation of noise and speech models

Performance
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{981 Prob Noise and Speech Model Estimation

e Approach I: for single model case

— Find one ‘optimal’ speech and one ‘optimal’ noise model
e Spectral subtraction
e ML estimate of
e MAP estimate of ={0 , }
 MMSE estimate of speech Breis

— Find MMSE estimate of speech given this combination

— (Remember ML estimate speech not sensible)

— Advantage: estimate based on true speech and noise models
— Disadvantage: larger MSE

e Approach Il: for distribution of models
— Find posterior distribution of models p®(<9| y“)

— Find MMSE estimate of speech E[X*|y“]
e use posterior distribution

— Disadvantage: output does not have to be “true speech”
— Advantage: smaller MSE
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frny MAP and ML Estimation of &

: ] o must be measured
e Maximum posterior probability (MAP): / or postulated

k l9 49
argmax poy (01]y) — argmax P10 19Po(®)
¢ Z py(Y")

= argmax py, (Y 16) pe (0)

e ML: prior probability constant (=6 is deterministic)

k l9 49
argmax poy (01y) —argmax P10 19Po(®)
¢ Z py(Y")

=argmax py, (y*16)
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fKTHY Gaussian Assumption

e Speech and noise satisfy AR model:

pX|® (Xk | Hspeech) = exp(_XkT R)_(1 (gspeech)xk / 2)

J(@7)* det(R,)
exp(~w" R, (6

noise

W /2)

16 . )=
pW|®(W | n0|se) \/(27[)k det(RW)

Py (Y 16) = exp(-y“" (Ry +Ry )"y /2)

J@r)* det(Ry + Ry )
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S, Model Family/Structure:

EEEEEEEEE

bl Gaussian Assumption and AR Model

e AR model
AR

iid Gaussian — ., speech

Model 8

- Implication: Rx=E ¥ K kH] /AZA(Q)
— E|Ac*e™ A ]
= o*AA"
=R, (0)

e Ais Toeplitz, since AR model is a linear filter

- Circulant approximation: FR,F" =¢’diag(P,)
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frny MAP and ML Estimation of &

: ] o must be measured
e Maximum posterior probability (MAP): / or postulated

k l9 49
argmax poy (01]y) — argmax P10 19Po(®)
¢ Z py(Y")

= argmax py, (Y 16) pe (0)

e ML: prior probability constant (=6 is deterministic)

k l9 49
argmax poy (01y) —argmax P10 19Po(®)
¢ Z py(Y")

=argmax py, (y*16)
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98] Example: Codebook ML and MAP

e ML algorithm
— For all model combinations 6 ={0,..., 6.}
evaluate likelihood for y*
— Select model with maximum likelihood

e MAP algorithm
— Presume a prior Pg(6)
— For all model combinations & ={Ceec: hoise}
evaluate a-posteriori probability for y"
— Select model with maximum a-posteriori probability
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81 Side-Step: Introducing Memory |

e Not sensible for ML

e Easy for MAP

e Difficult for MMSE
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{91 Side-Step: Introducing Memory Il

e First-order Markov model

Psis... (Si Si1:Si o) = Pg;s (S; [ Si1)

/
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{981 Side-Step: Introducing Memory |11

e First-order Markov model
arg max pey (91 Yi)
=argmax Py (¥i'16)Po (6)/ P(Y;)
= argmax py, (y; 10)pe (6)

=alg gnax Z Pyio,s (i 10,s)) Po.s (€15)Ps(S;)

=arg gnax ZZ Pvie.s (Y5 16,5) o5 (015)Ps (S, 151)Ps (511

Sicg S

e Use Viterbi algorithm to find optimal sequence
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fxrHy MMSE Estimation of &

- MMSE estimation of 0 ={0, . Groice}

— Continuous case: )
=E[O]|y"]

= [0p,y (01y*)do
0Py (Y 10)Po(0)
py (¥")
0Py, (Y 10) e (6)d6
j Py (Y 16) po (6)d 6

— MSE must be reasonable -> LSF

wbk 06/02/22 52




finy Codebook MMSE

- MMSE estimation of 0 ={6, . Oroice }

— Discrete case: 6 = E[O®]y“]

_ Z‘gpwe(yk 16.) pg (6:)
Z pY|¢9(yk 16)p,(6)
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1 Mixture Model for Model Parameters

= Mixture prior model: Pg(6) :Zci P, (6)

e Simple to combine with: 6 = E[O©]y*]
- Iepew @ yk)de
:Iepm(yk I«i) o (9).,
Py (Y")
0P, (Y 10) o (0)d0
) jpwe(yk |10) p, (6)dO

e May need numerical approximations
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] Noise and Speech Model Estimation

e Approach I: for single-model case

— Find one ‘optimal’ speech and one ‘optimal’ noise model
e Spectral subtraction
e ML estimate of
e MAP estimate of ={0 , }
 MMSE estimate of speech Breis

— Find MMSE estimate of speech given this combination

— (Remember ML estimate speech not sensible)

— Advantage: estimate based on true speech and noise models
— Disadvantage: larger MSE

e Approach Il: for distribution of models
— Find posterior distribution of models p®(<9| y“)

— Find MMSE estimate of speech E[X*|y*]
e use posterior distribution

— Disadvantage: output does not have to be “true speech”
— Advantage: smaller MSE
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fxrHy Posterior Distribution

e Posterior distribution in terms of known distributions

must be measured
or postulated

D0 (V" 16) o (6)
P, (¥°)

Py (Y 10) Do (6)

[Py (Y 10)po (0)d0

oy (O1Y4) =
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oy Additional Issues

e Gain:
— Noise and speech gain varies strongly:
e Separate scaling for model

e How to obtain models for @
— Codebook

e Random sampling data base
e Lloyd algorithm

— Gaussian mixtures / HMM
e Expectation maximization (EM) algorithm
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frrd Typical Performance

e Typical problem:
— “Musical” noise

— Performance became acceptable in commercial
applications: 1990-1995

e Performance better for stationary signals
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{KTHY Conclusions

e Motivated by ubiquitous network
e Nice application for estimation theory

e Methods
— Approach |
e Find one ‘optimal’ speech and one ‘optimal’ noise model
e Find MMSE estimate of speech given this combination
— Approach 1l
e Find posterior distribution of models

e Find MMSE estimate of speech given the posterior
distribution

e Performance now sufficient for practical applications
— Watch musical noise
— Distortion versus noise suppression
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