

Signal Enhancement

Bastiaan Kleijn
KTH School of Electrical Engineering
Stockholm

Overview

- Motivation / Introduction
- Basic noise- and signal (speech) power spectrum estimation
- Estimating noise-free speech given noise/speech models:
 - Linear estimators: Wiener filter in various flavors
 - General estimators: Wiener filter and other estimators
- Probabilistic estimation of noise and speech models
- Performance

Problem Definition

Signal corrupted by additive noise

$$- Y^k = X^k + W^k$$

- X^k and W^k statistically independent
- Estimate noise-free signal

Motivation for Enhancement

- Plain old telephone service (POTS)
 - Generally low acoustic background noise level
 - Phone booth
 - Home
- Modern networks
 - Often high acoustic background noise level
 - Mobile phones
 - Computer as phone
- Complication:
 - Not difficult to improve SNR
 - Difficult to obtain enhanced signal that sounds more pleasant than noisy signal

Location in Network

- Input based
 - Obvious location
 - Best performance, in commercial use

- Output based
 - Quality resides with purchaser of device

Single- and Multi-Channel Enhancement

- Single-channel
 - Beneficial if no control of input device
 - Inexpensive
 - Now common
- Multi-channel
 - Adaptive noise cancellation
 - Assumes noise reference available
 - Adaptive beam forming
 - Physical model of environment
 - Blind source separation
 - No physical model
 - Assumes convolutive mixing, independent sources
 - Outputs are filtered versions of original

Single-Channel Architecture

- General algorithmic steps
 - 1. Estimate noise *and speech* model (variance, power spectrum / AR parameters)
 - May exploit prior knowledge of signal structure
 - 2. Estimate clean speech signal \hat{X}^{k}
 - Exploit speech or speech/noise model

Overview

- Motivation / Introduction
- Basic noise- and speech power spectrum estimation
- Estimating noise-free speech given noise/speech models:
 - Linear estimation: Wiener filter in various flavors
 - General estimation: Wiener filter and other estimators
- Probabilistic estimation of noise and speech models
- Performance

Voice-Activity Based Noise-PS Estimation

- Objective: to estimate power spectrum of noise $P_{\scriptscriptstyle W}^{\scriptscriptstyle k}$
- Algorithm for each block:
 - 1. Voice activity detection

 Based on spectral slope, signal power, autocorrelation, etc.
 - 2. If no speech present compute periodogram
 - 3. Average periodograms over suitable interval
 - 4. Result is power spectral estimate of noise \hat{P}_{W}^{k}
- Main weaknesses:
 - Voice activity detection notoriously unreliable
 - Operates on noisy signal
 - Assumes noise is stationary

Noise PS Estimation by Minimum Statistics

R. Martin, Aachen -> Bochum

- Objective: to estimate power spectrum of noise $P_{\scriptscriptstyle W}^{\scriptscriptstyle k}$
- Algorithm for each block:
 - 1. Compute periodogram $|(Fy^k)(m)|^2$ of noisy signal y^k
 - 2. Smooth periodogram across time (and frequency)
 - 3. Add new periodogram to stored set of last L periodograms
 - 4. Remove oldest periodogram from set of last L periodograms
 - 5. For each freq bin, find min value in periodogram set
 - 6. Compensate for estimation bias, get $\hat{P}_{\!\scriptscriptstyle W}^{^k}$
- Main weakness:
 - High computational effort
 - Requires near-stationarity of noise
 - Increase set cardinality -> more reliable but slower adaptation

Noise PS Estimation by Minimum Statistics

- Frame = 15 ms, 100 frames=1.5 s, $k=25 \sim 800 \text{ Hz}$
- Noise power spectral density estimation based on optimal smoothing and minimum statistics

 Martin, R.; Speech and Audio Processing, IEEE Transactions on, Volume 9, Issue 5, July 2001 Page(s):504 512

Quantile Based Noise PS Estimation

- ullet Objective: to estimate power spectrum of noise $P_{\scriptscriptstyle W}^{^{\kappa}}$
- Algorithm for each block:
 - 1. Compute periodogram $|(Fy^k)(m)|^2$ of noisy signal y^k
 - 2. Add new periodogram to stored set of last L pgrams
 - 3. Remove oldest periodogram from set of last L pgrams
 - 4. For each freq bin, find qth quantile in periodogram set: \hat{P}_W^k

- Main weakness:
 - High computational effort
 - Requires near-stationarity of noise
 - increase set cardinality -> more reliable but slower adaptation

Quantile Based Noise PS Estimation

• Quantile based noise estimation for spectral subtraction and Wiener filtering Stahl, V.; Fischer, A.; Bippus, R.; Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on, Volume 3, 5-9 June 2000 Page(s): 1875 - 1878 vol.3

Speech PS Estimation by Subtraction

- Objective: to estimate speech power spectrum P_x^k
- Solution: ad-hoc but simple
- Spectral subtraction (ad hoc):

$$\sqrt{\hat{P}_X^k(m)} = \max(0, |(Fy^k)(m)| - \sqrt{\hat{P}_W^k(m)})$$

Power spectral subtraction (logical if signals uncorrelated):

$$\hat{P}_X^k(m) = \max(0, |(Fy^k)(m)|^2 - \hat{P}_W^k(m))$$

Low signal magnitude: estimates poor \implies musical noise

Overview

- Motivation / Introduction
- Basic noise- and speech power spectrum estimation
- Estimating noise-free speech given noise/speech models:
 - Linear estimation: Wiener filter in various flavors
 - General estimation: Wiener filter and other estimators
- Probabilistic estimation of noise and speech models
- Performance

Speech Estimation Problem

- Given
 - Speech power spectrum $\hat{P}_{\scriptscriptstyle X}^{\scriptscriptstyle k}$
 - Noise power spectrum \hat{P}_W^k
 - Noisy speech y^k
- We want MMSE estimate

$$\underset{v}{\operatorname{argmin}} E[|X^{k} - v|^{2}] = E[X^{k}]$$

Ad-hoc Noise Suppression

- We have
 - Estimate speech power spectrum $\frac{P}{r}$
 - Estimate noise power spectrum
 - Noisy speech y^k
- We want $E[X^k]$
- Ad-hoc solution: ignore phase, Spectral Subtraction:

$$(F\hat{\mathbf{x}}^k)(\mathbf{m}) = \sqrt{\frac{\hat{P}_X^k(m)}{\hat{P}_Y^k(m)}} \quad (F\mathbf{y}^k)(\mathbf{m})$$
$$\hat{x}^k = F^H (\operatorname{diag} \hat{P}_X^k) (\operatorname{diag} \hat{P}_Y^k)^{-1} \quad F \quad y^k$$

 Not based on MMSE criterion but ad-hoc solution is essentially what we get from Wiener filter

Formal Solution: Wiener Filter

Operator that estimates speech from noisy speech

- Follows from either of two equivalent assumptions:
 - 1. MMSE *linear* estimate
 - 2. Best estimate if speech and noise have Gaussian distribution

MMSE Linear Estimator H

- Linear estimate $\hat{X}^k = H Y^k$
- MSE that retains some noise:

$$\eta = \mathbb{E} \left\| (X^k + \varepsilon W^k) - \hat{X}^k \right\|_2$$

$$= \mathbb{E} \left[\operatorname{tr} \left[\left((X^k + \varepsilon W^k) - \hat{X}^k \right) \left((X^k + \varepsilon W^k) - \hat{X}^k \right)^H \right] \right]$$

- Find optimal linear estimator H
 - Assume covariance matrices of $R_{\scriptscriptstyle W}$ and $R_{\scriptscriptstyle X}$ known

Wiener Filter that Minimizes MSE

why we used the "trace" notation

MSE criterion:

$$\eta = \mathbf{E} \Big[\operatorname{tr} \Big[(X^k + \varepsilon W^k - H Y^k) (X^k + \varepsilon W^k - H Y^k)^H \Big] \Big]$$

$$= \mathbf{E} \Big[\operatorname{tr} \Big[(H - I) X^k + (H - \varepsilon I) W^k) ((H - I) X^k + (H - \varepsilon I) W^k \Big]^H \Big]$$

$$= \operatorname{tr} \Big[(H - I) R_X (H - I)^H \Big] + \operatorname{tr} \Big[(H - \varepsilon I) R_W (H - \varepsilon I)^H \Big]$$

Differentiate to H_{ii}; set to zero; solve;

Wiener filter:
$$H = (R_X + \varepsilon R_W) (R_X + R_W)^{-1}$$

Wiener Filter that Minimizes MS Distortion

Y. Ephraim

Estimation error is
$$X^k - \hat{X}^k = X^k - HY^k$$

$$= (H - I)X^k - HW^k$$

- Distortion: $(H-I)X^k$
- Residual noise: HW^k
- Alternative: minimize distortion given residual noise (or vice versa)

$$\eta = \mathbf{E} \| (H - I)X^k \|_2 + \mu \mathbf{E} \| HW^k \|_2$$
$$= \operatorname{tr} \left[(H - I)R_X (H - I)^H \right] + \mu \operatorname{tr} \left[(HR_W H^h) \right]$$

- Solution: $H = R_x (R_x + \mu R_w)^{-1}$
 - Each μ corresponds to particular residual noise level

Wiener Filter: Cyclic Approximation

- Discrete Fourier transform is a matrix F
 - inverse Fourier transform is F^H ; that is $F^HF = I$
- Properties of $R_{\scriptscriptstyle X}$ and $R_{\scriptscriptstyle W}$
 - stationary signals: Toeplitz and symmetric
 - periodic stationary signals: circulant and symmetric
 - Fourier T diagonalizes circulant symmetric matrices:
 Diagonal of matrix is diag(power spectral density)
- Under periodic approximation:

$$FHF^{H} = F(R_{X} + \varepsilon R_{W})F F^{H}(R_{X} + R_{W})^{-1}F^{H}$$

$$= (FR_{X}F^{H} + \varepsilon FR_{W}F^{H}) (FR_{X}F^{H} + FR_{W}F^{H})^{-1}$$

$$\approx (\operatorname{diag} P_{X} + \varepsilon \operatorname{diag} P_{W})(\operatorname{diag} P_{X} + \operatorname{diag} P_{W})^{-1}$$

Wiener Filter and Subspace Methods

Y. Ephraim

- Assume white noise (pre- and post- filter if it is not)
 - Then $R_{\scriptscriptstyle W}$ scaled identity matrix
- Note

$$R_{Y} = R_{X} + R_{W} = R_{X} + \Lambda_{W} = U^{H} \Lambda_{X} U + U^{H} R_{W} U$$

- Retain only subspace (spanned by rows of U) corresponding to large eigenvalues of $\Lambda_{\scriptscriptstyle X}$
 - Somewhat ad-hoc

remains diagonal for white noise

Wiener Filter and Kalman Filter

- Kalman filter is a time-varying filter
 - Model of signal and noise known; state-space formulation:

$$x^{k}(n+1) = Ax^{k}(n) + Gv^{k}(n)$$
$$y(n) = Bx^{k}(n) + w^{k}(n)$$

- Objective: find MMSE estimate of $x^k(n)$ given $\dots, y(n-2), y(n-1), y(n)$ and state-space model
- Main difference to Wiener filter: causality!
 - Causality reduces performance
 - Can handle time-variant speech/noise model
 - Low number of parameters: perceptual weighing helps
- Kalman smoother: allows delay ⇒
 - Converges to Wiener filter performance
 - Speech: small delay gives near-optimal performance

On causal algorithms for speech enhancement Grancharov, V.; Samuelsson, J.; Kleijn, B.; Audio, Speech and Language Processing, IEEE Transactions on [see also Speech and Audio Processing, IEEE Transactions on] Volume 14, Issue 3, May 2006 Page(s):764 - 773

Overview

- Motivation / Introduction
- Basic noise- and speech power spectrum estimation
- Estimating noise-free speech given noise/speech models:
 - Linear estimation: Wiener filter in various flavors
 - General estimation: ML estimator, Wiener filter, etc.
 - Estimation based on distribution of models
- Probabilistic estimation of noise and speech models
- Performance

Side-Step: ML Estimate

Max likelihood estimate:

$$\hat{x}^{k} = \underset{x^{k}}{\operatorname{arg max}} p_{Y|X}(y^{k} | x^{k})$$

$$= \underset{x^{k}}{\operatorname{arg max}} p_{W|X}(y^{k} - x^{k} | x^{k})$$

$$= \underset{x^{k}}{\operatorname{arg max}} p_{W}(y^{k} - x^{k})$$

$$= y^{k}$$

Conclusion: ML speech estimate does not reduce noise!

MMSE Estimator

MMSE estimation:

$$\hat{x}^{k} = \underset{v^{k}}{\operatorname{arg\,min}} \operatorname{E}\left[(X^{k} - v^{k})^{2} \mid Y^{k} = y^{k} \right]$$

$$= \operatorname{E}\left[X^{k} \mid y^{k} \right]$$

$$= \int x^{k} p_{X|Y}(x^{k} \mid y^{k}) dx^{k}$$

$$= \int x^{k} p_{Y|X}(y^{k} \mid x^{k}) p_{X}(x^{k}) / p_{Y}(y^{k}) dx^{k}$$

Gaussian Assumption for PDFs

Speech and noise have Gaussian distribution:

$$p_{X}(x^{k}) = \frac{1}{\sqrt{(2\pi)^{k} \det(R_{X})}} \exp(-x^{kT} R_{X}^{-1} x^{k} / 2)$$

$$p_{W}(w^{k}) = \frac{1}{\sqrt{(2\pi)^{k} \det(R_{W})}} \exp(-w^{kT} R_{W}^{-1} w^{k} / 2)$$

$$p_{Y}(y^{k}) = \frac{1}{\sqrt{(2\pi)^{k} \det(R_{X} + R_{W})}} \exp(-y^{kT} (R_{X} + R_{W})^{-1} y^{k} / 2)$$

• Then:

$$p_W(y^k - x^k) = \frac{1}{\sqrt{(2\pi)^k \det(R_Y - R_X)}} \exp(-(y^k - x^k)^T (R_Y - R_X)^{-1} (y^k - x^k)/2)$$

MMSE Estimator

MMSE estimation:

$$\hat{x}^{k} = \arg\min_{v^{k}} \mathbb{E}\left[(X^{k} - v^{k})^{2} \mid Y^{k} = y^{k} \right]$$

$$= \mathbb{E}\left[X^{k} \mid y^{k} \right]$$

$$= \int x^{k} p_{X|Y}(x^{k} \mid y^{k}) dx^{k}$$

$$= \int x^{k} p_{Y|X}(y^{k} \mid x^{k}) p_{X}(x^{k}) / p_{Y}(y^{k}) dx^{k}$$

Next, we work out the argument of the integral

MMSE Estimator: the Gaussian I

• Rewrite density (y^k is constant; complete the square):

$$p_{W}(y^{k} - x^{k}) p_{X}(x^{k}) / p_{Y}(y^{k}) =$$

$$= C \exp\left(\frac{-(y^{k} - x^{k})^{T} R_{W}^{-1}(y^{k} - x^{k}) + x^{kT} R_{X}^{-1} x^{k}}{2}\right)$$

$$= C \exp\left(\frac{-x^{kT} (R_{X}^{-1} + R_{W}^{-1}) x^{k} + 2x^{kT} R_{W}^{-1} y^{k}}{2}\right)$$

$$= C \exp\left(\frac{-x^{kT} (R_{X}^{-1} + R_{W}^{-1}) x^{k} + 2x^{kT} R_{W}^{-1} y^{k}}{2}\right)$$

$$= C \exp\left(\frac{-x^{kT} (R_{X}^{-1} + R_{W}^{-1}) x^{k} + 2x^{kT} (R_{X}^{-1} + R_{W}^{-1}) (R_{X}^{-1} + R_{W}^{-1})^{-1} R_{W}^{-1} y^{k}}{2}\right)$$

$$= C \exp\left(\frac{-(z^{k} - x^{k})^{T} (R_{X}^{-1} + R_{W}^{-1}) (z^{k} - x^{k})}{2}\right)$$

$$= p_{U}(z^{k} - x^{k})$$

where:

$$z^{k} = (R_{X}^{-1} + R_{W}^{-1})^{-1} R_{W}^{-1} y^{k} = R_{X} (R_{W} + R_{X})^{-1} y^{k} = R_{X} R_{Y}^{-1} y^{k}$$

MMSE Estimator: the Gaussian II

Back to the MMSE estimate:

$$\hat{x}^{k} = \mathbb{E} \left[X^{k} \mid y^{k} \right]$$

$$= \int x^{k} p_{U}(z^{k} - x^{k}) dx^{k}$$

$$= \int (x^{k} - z^{k}) p_{U}(z^{k} - x^{k}) dx^{k} + z^{k} \int p_{U}(z^{k} - x^{k}) dx^{k}$$

$$= z^{k}$$

$$= R_{X} R_{Y}^{-1} y^{k}$$

- Is linear!
- Is the Wiener filter!

MMSE Estimator

MMSE estimation:

$$\hat{x}^{k} = \underset{v^{k}}{\operatorname{arg\,min}} \operatorname{E}\left[(X^{k} - v^{k})^{2} \mid Y^{k} = y^{k} \right]$$

$$= \operatorname{E}\left[X^{k} \mid y^{k} \right]$$

$$= \int x^{k} p_{X|Y}(x^{k} \mid y^{k}) dx^{k}$$

$$= \int x^{k} p_{Y|X}(y^{k} \mid x^{k}) p_{X}(x^{k}) / p_{Y}(y^{k}) dx^{k}$$

General MMSE Estimator I

Variants on criterion:

- Gaussian but MMSE on amplitude only
 - Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator, Ephraim, Y.; Malah, D.; Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE Transactions on, Volume 32, Issue 6, Dec 1984, Page(s):1109 1121

Fig. 6. Gain curves describing (a) MMSE gain function $G_{\text{MMSE}}(\xi_k, \gamma_k)$ defined by (7) and (14), with $\xi_k = \gamma_k - 1$, (b) "spectral subtraction" gain function (46) with $\beta = 1$, and (c) Wiener gain function $G_W(\xi_k, \gamma_k)$ (15) with $\xi_k = \gamma_k - 1$.

Overview MMSE Estimator

- Variants on speech distribution:
 - Gaussian but MMSE on amplitude only
 - Similar effect as estimating $X^k + \varepsilon W^k$
 - Super-Gaussian models
 - Gamma distribution of DFT coefficients
 - Minor improvement

Overview

- Motivation / Introduction
- Basic noise- and speech power spectrum estimation
- Estimating noise-free speech given noise/speech models:
 - Linear estimation: Wiener filter in various flavors
 - General estimation: ML estimator, Wiener filter, etc.
 - Estimation based on distribution of models
- Probabilistic estimation of noise and speech models
- Performance

Distribution of Models

- Model distributions
 - Speech/noise models each have probability given observed data $p_{\Theta|Y^k}(\theta \mid y^k)$
 - The MMSE is averaged over models:

$$\hat{x}^{k} = \underset{v^{k}}{\operatorname{arg\,minE}} \left[||X^{k} - v^{k}||^{2} ||y^{k}| \right] = \operatorname{E}\left[X^{k} ||y^{k}| \right]$$

$$= \int x^{k} p_{X^{k}|Y^{k}}(x^{k}||y^{k}) dx^{k}$$

$$= \int x^{k} \int p_{X^{k}|Y^{k},\Theta}(x^{k}||y^{k},\theta) p_{\Theta|Y^{k}}(\theta ||y^{k}) d\theta dx^{k}$$

$$= \int \int x^{k} p_{X^{k}|Y^{k},\Theta}(x^{k}||y^{k},\theta) dx^{k} p_{\Theta|Y^{k}}(\theta ||y^{k}) d\theta$$

$$= \int R_{X^{k}}(\theta) R_{Y^{k}}^{-1}(\theta) y^{k} p_{\Theta|Y^{k}}(\theta ||y^{k}) d\theta$$

Codebook of Models I

Codebook of Models II

- Consider a codebook with 1000 speech spectra and 10 noise spectra; Gaussian speech & noise assumption /
- 10.000 speech+noise covariance matrices / spectra
- Each combination has a corresponding Wiener filter
- Each combination has a probability given the data
- Compute speech estimate as weighted sum of Wiener filters operating on noisy input

prevents ambiguity

The Details for the Distribution Case

Gaussian speech assumption:

$$\begin{split} \hat{x}^k &= \mathrm{E}[X^k \mid y^k] \\ &= \int x^k \, p_{X|Y}(x^k \mid y^k) dx^k \\ &= \int x^k \, \left(\int p_{X|Y,\Theta}(x^k \mid y^k, \theta) \, p_{\Theta}(\theta^k \mid y^k) d\theta \right) \, dx^k \\ &= \int \, \left(\int x^k \, p_{X|Y,\Theta}(x^k \mid y^k, \theta) dx^k \right) \, p_{\Theta|Y}(\theta \mid y^k) \, d\theta^k \\ &= \int \, \left(\int x^k \, p_{X|Y,\Theta}(x^k \mid y^k, \theta) dx^k \right) \, \frac{p_{Y|\Theta}(y^k \mid \theta) \, p_{\Theta}(\theta)}{\int p_{Y|\Theta}(y^k \mid \theta) \, p_{\Theta}(\theta) d\theta} \, d\theta \\ &= \int \left(R_X(\theta) R_Y^{-1}(\theta) \, y^k \right) \, \frac{p_{Y|\Theta}(y^k \mid \theta) \, p_{\Theta}(\theta)}{\int p_{Y|\Theta}(y^k \mid \theta) \, p_{\Theta}(\theta) d\theta} \, d\theta \quad \text{must be measured} \\ &= \int R_X(\theta) R_Y^{-1}(\theta) \, \frac{p_{Y|\Theta}(y^k \mid \theta) \, p_{\Theta}(\theta)}{\int p_{Y|\Theta}(y^k \mid \theta) \, p_{\Theta}(\theta) d\theta} \, d\theta \quad y^k \end{split}$$

MMSE for Distribution of Models

Model distributions:

$$\hat{x}^{k} = \mathbb{E} \left[X^{k} \mid y^{k} \right]$$

$$= \int x^{k} p_{X|Y}(x^{k} \mid y^{k}) dx^{k}$$

$$= \int x^{k} \left(\int p_{X|Y,\Theta}(x^{k} \mid y^{k}, \theta) p_{\Theta}(\theta^{k} \mid y^{k}) d\theta \right) dx^{k}$$

$$= \int \left(\int x^{k} p_{X|Y,\Theta}(x^{k} \mid y^{k}, \theta) dx^{k} \right) p_{\Theta|Y}(\theta \mid y^{k}) d\theta$$

- We simply average the estimates
- If each $p_{X|Y,\Theta}(x^k | y^k, \theta)$ corresponds to Gaussian noise and speech models, then we average the corresponding Wiener filters!

MMSE for Distribution of Models

- Still missing:
 - The density $p_{\Theta|Y}(\theta_1 \mid y^k)$

Overview

- Motivation / Introduction
- Basic noise- and speech power spectrum estimation
- Estimating noise-free speech given noise/speech models:
 - Linear estimation: Wiener filter in various flavors
 - General estimation: Wiener filter and other estimators
- Probabilistic estimation of noise and speech models
- Performance

Prob Noise and Speech Model Estimation

- Approach I: for single model case
 - Find one 'optimal' speech and one 'optimal' noise model
 - Spectral subtraction
 - · ML estimate of
 - MAP estimate of
 - MMSE estimate of

$$\theta = \{\theta_{\text{speech}}, \theta_{\text{noise}}\}$$

- Find MMSE estimate of speech given this combination
- (Remember ML estimate speech not sensible)
- Advantage: estimate based on true speech and noise models
- Disadvantage: larger MSE
- Approach II: for distribution of models
 - Find posterior distribution of models $p_{\Theta}(\theta | y^k)$
 - Find MMSE estimate of speech $E[X^k | y^k]$
 - use posterior distribution
 - Disadvantage: output does not have to be "true speech"
 - Advantage: smaller MSE

MAP and ML Estimation of θ

• Maximum posterior probability (MAP):

must be measured or postulated

$$\underset{\theta}{\operatorname{arg\,max}} p_{\Theta|Y}(\theta \mid y^{k}) = \underset{\theta}{\operatorname{arg\,max}} \frac{p_{Y|\Theta}(y^{k} \mid \theta) p_{\Theta}(\theta)}{p_{Y}(y^{k})}$$
$$= \underset{\theta}{\operatorname{arg\,max}} p_{Y|\Theta}(y^{k} \mid \theta) p_{\Theta}(\theta)$$

• ML: *prior* probability constant (= θ is deterministic)

$$\underset{\theta}{\operatorname{arg max}} p_{\Theta|Y}(\theta \mid y^{k}) = \underset{\theta}{\operatorname{arg max}} \frac{p_{Y|\Theta}(y^{k} \mid \theta)p_{\Theta}(\theta)}{p_{Y}(y^{k})}$$
$$= \underset{\theta}{\operatorname{arg max}} p_{Y|\Theta}(y^{k} \mid \theta)$$

Gaussian Assumption

Speech and noise satisfy AR model:

$$p_{X|\Theta}(x^{k} \mid \theta_{\text{speech}}) = \frac{1}{\sqrt{(2\pi)^{k} \det(R_{X})}} \exp(-x^{kT} R_{X}^{-1}(\theta_{\text{speech}}) x^{k} / 2)$$

$$p_{W|\Theta}(w^{k} \mid \theta_{\text{noise}}) = \frac{1}{\sqrt{(2\pi)^{k} \det(R_{W})}} \exp(-w^{kT} R_{W}^{-1}(\theta_{\text{noise}}) w^{k} / 2)$$

$$p_{Y|\Theta}(y^{k} \mid \theta) = \frac{1}{\sqrt{(2\pi)^{k} \det(R_{X} + R_{W})}} \exp(-y^{kT} (R_{X} + R_{W})^{-1} y^{k} / 2)$$

Model Family/Structure: Gaussian Assumption and AR Model

• Implication: $R_{X} = E \left[x^{k} x^{kH} \right] \qquad A = A(\theta)$ $= E \left[A e^{k} e^{kH} A^{H} \right]$ $= \sigma^{2} A A^{H}$ $= R_{X}(\theta)$

- A is Toeplitz, since AR model is a linear filter
- Circulant approximation: $FR_X F^H = \sigma_e^2 \operatorname{diag}(P_A)$

MAP and ML Estimation of θ

Maximum *posterior* probability (MAP):

must be measured or postulated

$$\underset{\theta}{\operatorname{arg\,max}} p_{\Theta|Y}(\theta \mid y^{k}) = \underset{\theta}{\operatorname{arg\,max}} \frac{p_{Y|\Theta}(y^{k} \mid \theta) p_{\Theta}(\theta)}{p_{Y}(y^{k})}$$
$$= \underset{\theta}{\operatorname{arg\,max}} p_{Y|\Theta}(y^{k} \mid \theta) p_{\Theta}(\theta)$$

• ML: *prior* probability constant (= θ is deterministic)

$$\arg \max_{\theta} p_{\Theta|Y}(\theta \mid y^{k}) = \arg \max_{\theta} \frac{p_{Y|\Theta}(y^{k} \mid \theta) p_{\Theta}(\theta)}{p_{Y}(y^{k})}$$
$$= \arg \max_{\theta} p_{Y|\Theta}(y^{k} \mid \theta)$$

Example: Codebook ML and MAP

- ML algorithm
 - For all model combinations $\theta = \{\theta_{\text{speech}}, \theta_{\text{noise}}\}$ evaluate likelihood for y^k
 - Select model with maximum likelihood

- MAP algorithm
 - Presume a prior $p_{\Theta}(\theta)$
 - For all model combinations $\theta = \{\theta_{\text{speech}}, \theta_{\text{noise}}\}$ evaluate a-posteriori probability for y^k
 - Select model with maximum a-posteriori probability

Side-Step: Introducing Memory I

- Not sensible for ML
- Easy for MAP
- Difficult for MMSE

Side-Step: Introducing Memory II

First-order Markov model

$$p_{S|S,\cdots}(s_i \mid s_{i-1}, s_{i-2}\cdots) = p_{S|S}(s_i \mid s_{i-1})$$

Side-Step: Introducing Memory III

First-order Markov model

$$\begin{aligned} & \underset{\theta}{\operatorname{arg max}} \ p_{\Theta|Y}(\theta \mid y_{i}^{k}) \\ & = \underset{\theta}{\operatorname{arg max}} \ p_{Y|\Theta}(y_{i}^{k} \mid \theta) p_{\Theta}(\theta) / p(y_{i}^{k}) \\ & = \underset{\theta}{\operatorname{arg max}} \ p_{Y|\Theta}(y_{i}^{k} \mid \theta) p_{\Theta}(\theta) \\ & = \underset{\theta}{\operatorname{arg max}} \ \sum_{s_{i}} p_{Y|\Theta,S}(y_{i}^{k} \mid \theta, s_{i}) p_{\Theta,S}(\theta \mid s_{i}) p_{S}(s_{i}) \\ & = \underset{\theta}{\operatorname{arg max}} \ \sum_{s_{i-1}} \sum_{s_{i}} p_{Y|\Theta,S}(y_{i}^{k} \mid \theta, s_{i}) p_{\Theta,S}(\theta \mid s_{i}) p_{S}(s_{i} \mid s_{i-1}) p_{S}(s_{i-1}) \end{aligned}$$

Use Viterbi algorithm to find optimal sequence

MMSE Estimation of θ

- MMSE estimation of $\theta = \{\theta_{\text{speech}}, \theta_{\text{noise}}\}$
- - Continuous case:

$$\begin{split} \hat{\theta} &= \mathrm{E}[\Theta \mid y^{k}] \\ &= \int \theta p_{\theta \mid Y}(\theta \mid y^{k}) d\theta \\ &= \int \frac{\theta p_{Y \mid \theta}(y^{k} \mid \theta) p_{\Theta}(\theta)}{p_{Y}(y^{k})} d\theta \\ &= \frac{\int \theta p_{Y \mid \theta}(y^{k} \mid \theta) p_{\Theta}(\theta) d\theta}{\int p_{Y \mid \theta}(y^{k} \mid \theta) p_{\Theta}(\theta) d\theta} \end{split}$$

MSE must be reasonable -> LSF

Codebook MMSE

• MMSE estimation of $\theta = \{\theta_{\text{speech}}, \theta_{\text{noise}}\}$

- Discrete case:
$$\hat{\theta} = \mathrm{E}[\Theta \mid y^k]$$

$$= \frac{\sum \theta p_{Y|\theta}(y^k \mid \theta_i) p_{\Theta}(\theta_i)}{\sum p_{Y|\theta}(y^k \mid \theta_i) p_{\Theta}(\theta_i)}$$

Mixture Model for Model Parameters

• Mixture prior model: $p_{\Theta}(\theta) = \sum_{i} c_{i} p_{\theta,i}(\theta)$

Simple to combine with:

$$\begin{split} \hat{\theta} &= \mathrm{E}[\Theta \mid y^{k}] \\ &= \int \theta p_{\theta \mid Y}(\theta \mid y^{k}) d\theta \\ &= \int \frac{\theta p_{Y \mid \theta}(y^{k} \mid \theta) p_{\Theta}(\theta)}{p_{Y}(y^{k})} d\theta \\ &= \frac{\int \theta p_{Y \mid \theta}(y^{k} \mid \theta) p_{\Theta}(\theta) d\theta}{\int p_{Y \mid \theta}(y^{k} \mid \theta) p_{\Theta}(\theta) d\theta} \end{split}$$

May need numerical approximations

Noise and Speech Model Estimation

- Approach I: for single-model case
 - Find one 'optimal' speech and one 'optimal' noise model
 - Spectral subtraction
 - ML estimate of
 - MAP estimate of
 - MMSE estimate of

$$\theta = \{\theta_{\text{speech}}, \theta_{\text{noise}}\}$$

- Find MMSE estimate of speech given this combination
- (Remember ML estimate speech not sensible)
- Advantage: estimate based on true speech and noise models
- Disadvantage: larger MSE
- Approach II: for distribution of models
 - Find posterior distribution of models $p_{\Theta}(\theta | y^k)$
 - Find MMSE estimate of speech $E[X^k | y^k]$
 - use posterior distribution
 - Disadvantage: output does not have to be "true speech"
 - Advantage: smaller MSE

Posterior Distribution

Posterior distribution in terms of known distributions

 $p_{\Theta|Y^{k}}(\theta \mid y^{k}) = \frac{p_{Y^{k}|\Theta}(y^{k} \mid \theta)p_{\Theta}(\theta)}{p_{Y^{k}}(y^{k})}$ $= \frac{p_{Y^{k}|\Theta}(y^{k} \mid \theta)p_{\Theta}(\theta)}{\int p_{Y^{k}|\Theta}(y^{k} \mid \theta)p_{\Theta}(\theta)d\theta}$

must be measured or postulated

Additional Issues

- Gain:
 - Noise and speech gain varies strongly:
 - Separate scaling for model

- How to obtain models for Θ
 - Codebook
 - Random sampling data base
 - Lloyd algorithm
 - Gaussian mixtures / HMM
 - Expectation maximization (EM) algorithm

Overview

- Motivation / Introduction
- Basic noise- and speech power spectrum estimation
- Estimating noise-free speech given noise/speech models:
 - Linear estimation: Wiener filter in various flavors
 - General estimation: Wiener filter and other estimators
- Probabilistic estimation of noise and speech models
- Performance

Typical Performance

- Typical problem:
 - "Musical" noise
 - Performance became acceptable in commercial applications: 1990-1995

Performance better for stationary signals

Conclusions

- Motivated by ubiquitous network
- Nice application for estimation theory
- Methods
 - Approach I
 - Find one 'optimal' speech and one 'optimal' noise model
 - Find MMSE estimate of speech given this combination
 - Approach II
 - Find posterior distribution of models
 - Find MMSE estimate of speech given the posterior distribution
- Performance now sufficient for practical applications
 - Watch musical noise
 - Distortion versus noise suppression