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Overview

• Motivation for coding technologies

• Basic quantization and coding

• High-rate quantization theory
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Digital Representations

• Digital representation of signal
– Sequence of samples with finite precision
– Robust against distortion
– Facilitates processing

• Basic rates for audio signals:
– 48 kHz audio, 16 bits, stereo: 1536000 bits/second
– 8 kHz speech, 16 bits: 128000 bits/second
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High Rate is Expensive

• Transmission
– Wired links

• “Last mile”
• Packet networks
• Switching video 

– Wireless links
• WiFi
• Mobile telephony: coding was enabling technology

– Secure communication

• Storage
– Portable audio/video players
– Output surveillance cameras
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High Quality Now Less Natural

• Conventional circuit-switched networks
– Virtually no bit errors, no loss

• Mobile networks
– Reasonable cost and delay implies bit errors

• Packet networks
– Reasonable cost and delay implies packet loss
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Networks More Diverse

• How it was: 
– Single-paradigm network end-to-end
– One service

• How it is: 
– Many paradigms in one composite network:

• Circuit-switched network
• Packet network
• Wireless circuit-switched network
• Wireless packet network

– Many types of service
• Range of quality-cost 
• Streaming, one-on-one communication
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How We Designed Coders

• New application (particular network, storage) appeared
• Study application requirements
• Design coder for application requirements
• Have competition between coder designs for conditions 

of application
• Select best coder

• No vision of integrated network
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More On Design Conditions

• Attributes of a coder
– Rate
– Quality (subjective), includes signal bandwidth
– Delay
– Robustness:  bit errors and packet loss
– Computational complexity

• Designs selected for one configuration of attributes
– Associated with one network paradigm
– Design effort irrelevant
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Adapting to the New Environment

• Implications of old-school design in new world:
– Coders implicitly unable to adapt: codebooks
– Transcoding
– Performance unclear when applied to other conditions

• GSM coder applied to packet networks

• New-school design 
– Goal: coders that can adapt in real-time to 

• Network conditions
• Quality requirements

– Near-optimal over large range of conditions
– Employ high-rate quantization theory and more 

modeling
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Overview

• Motivation for coding technologies

• Basic quantization and coding

• High-rate quantization theory
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Quantization

• Quantization: non-invertible mapping from Euclidian 
space       to a countable set of points              that is a 
subset of 

– Quantization cell:  

– “Inverse quantization” is misnomer

{ : ( ) } k
i iV x Q x c= ∈ =R

{ }ic=CkR
kR
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Example: Scalar Quantizer

Q(x)

x
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Example: Vector Quantizer
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Quantization Cells and Centroids

• is a cell
– Usually assumed convex: “regular” quantizers 
– Cell = Voronoi region

• The quantization index     specifies the cell and the 
reconstruction point (often called the centroid)

• If the set of indices      is countable, the quantization 
index can generally be transmitted with a finite number 
of bits

encoder decodernetwork

{ : ( ) } k
i iV x Q x c= ∈ =R
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Example: Vector Quantizer
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Coding Principles

• Is it smart to simply transmit the index i?     NO!
– (it is if index probability uniform)

• Apply lossless (entropy) coding to indices
– Used to create “.zip”

lossless
encoder

lossless
decoder

network

 i i

{ : } i i ic c x V= ∈ ∈iC
encoder decoder

 x

iw iw
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Minimum (Bit) Rate of Index

• Code: the set of all codewords

• Uniquely decodable code: can always reconstruct

• ~Minimum codeword length for uniquely decodable code:
(follows from Kraft inequality)

• Entropy of the index:

– Is ~minimum average rate needed for index
• More accurately: 

2( ) ( ) log ( ( ))I I
i

H I p i p i= −∑

2( ) log ( ( ))i Il w p i= −

{ } iw

( ) ( ) 1H I L H I≤ < +



wbk 06/02/21 18

Example

• Index resembles coin flips

• Index resembles biased coin flips

2 2 2( ) ( ) log ( ( )) 0.5 log (0.5) 0.5 log (0.5) 1 bitsI I
i

H I p i p i= − = − − =∑

2 2

2 2

( ) 0.25 log (0.25) 0.75 log (0.75) 0.811 bits
0.05 log (0.05) 0.95 log (0.95) 0.286 bits

H I = − − =
= − − =
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Now Back to Quantization

• To quantize we need to know with respect to what

• Optimal trade-off distortion versus number of indices
– Constrained-resolution
– Assumes codeword length is fixed 
– Generally short delay
– Consistent with TDMA and FDMA, circuit-switched networks
– The past

• Optimal trade-off distortion versus average rate
– Constrained-entropy
– Assumes only average codeword length matters
– Often long delay
– Consistent with CDMA and packet-switched networks
– The future!
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Old-School, Any-Rate Quantization

• Standard approach
– Constrained-resolution
– Stored codebooks
– Codebooks trained with data

• (Generalized) Lloyd algorithm (GLA), Bell Labs, 1958
/ K-means algorithm
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Old-School, Any-Rate Quantization

• Is constrained-resolution

encoder decodernetwork
 x  i i { : } i i ic c x V= ∈ ∈iC
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Lloyd Algorithm

• Note:
– Encoder = Partition={Voronoi regions}
– Decoder = codebook={centroids)

• Lloyd algorithm:

• Optimize: minimize mean distortion:
• Locally optimal

optimize
encoder

optimize
decoder

done?

initial encoder
and decoder

final encoder
and decoder

E[min ( ,  )]k
ii I

d X c
∈
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Outcome Lloyd for Vector Quantizer
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Practical (Discrete) Lloyd Algorithm

• Have database

• Encoder = partition =

• Decoder = codebook =

• Optimize = minimize overall distortion:

{ }  k
m m Mx ∈

( ){ { } : ={ } } k k
j i i j j i i IV x V x∈ ∈= UI

{ }k
ic=Coptimize

optimize

done?

{ } jV

{ } ic=iC

iC

{ } jV iC{ } jV  iC

[min ( ,  )]k
m ii Im M

d x c
∈

∈
∑
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Old-School, Any-Rate Quantization

• Is in your cell phone
• Constrained resolution (fixed number of cells/centroids)
• Works even at low rates
• Locally optimal

– Distortion decreases each step
• Training computationally expensive: not in real time

– Iterative solutions only

• Many variants:
– Multi-stage
– Tree 
– Constrained-entropy version (around 1990)
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High-Rate Quantization

• Assume data density can be assumed constant within a 
cell (Bennett, 1948)

• Assume that notion density of centroids is meaningful 

• Problem formulation
– Given data density, distortion criterion, constraint
– Find centroid density (“quantizer”)

• Advantage of approach
– Optimal quantizer can be computed analytically
– Can be done in real-time



wbk 06/02/21 27

Distortion and Geometry: SQ
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• Scalar = cubic geometry
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Distortion and Geometry: VQ

• Mean distortion in cell i, r’th power criterion, per dim

• is the inertial profile
coefficient of quantization

( ) ( , ( ))
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Quantization and Cell Geometry

• Scalar case:
– cubic cells

• 2-D:
– Hexagonal in sets of two dimensions

•
– Spherical cells

• VQ has space-filling advantage; 1.53 dB (= 0.25 bit)

1( 2, 1, optimal) 0.0833
12

C r k G= = = ≈ =

5( 2, 2, optimal) 0.0802
36 5

C r k G= = = ≈ =

1( 2, , optimal) (2 ) 0.0585C r k G eπ −= = ∞ = ≈ =-D:∞
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CE Quantizers in 2D

• Two dimensions: square and hexagonal lattice
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High-Rate Quantization

• What we have done: 
relate local geometry to local distortion

• Next step:
to relate distortion, rate and centroid density
(and local geometry)

• Centroid density: number of centroids/unit volume      

( )kg x
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Reminder: Constrained-Entropy Coding

• Apply lossless (entropy) coding to indices
– Used to create “.zip”

• Rate is mean rate of codewords
– Consistent with CDMA, packet networks, the future

lossless
encoder

lossless
decoder

network

 i i

{ : } i i ic c x V= ∈ ∈iC
encoder decoder

 x

iw iw
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Constrained-Entropy Quantization I

• Constraint on index entropy

• Equivalent constraint 

( )

( ) ( ) log( ( ))

( ) log( ( ))

( ) log( ( )) log( ( )

( ) ( ) log( ( ))

I I
i

i X i i X i
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∑

∑

∫
∫
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Constrained-Entropy Quantization II

• Distortion:

• Add Lagrange-multiplier term:

• Minimize; get Euler-Lagrange equation; solve

( ) constant!!kg x =

i
 = ( ) ( ) ( , , ( ))

( , , ) ( ) ( )
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Moral of the Story

• For constrained-entropy quantization: 
simplest quantizer is best 
– All cells are same size and shape (not proven, that)
– Facilitates low computational complexity quantizer
– Can compute quantizer for given pdf and distortion
– Does not mean entire encoder is low complexity!

• Somewhat non-intuitive:
– Infinite number of cells/centroids!
– Cell size independent of data density
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CE Quantizers in 2D

• Two dimensions: square and hexagonal lattice
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Constrained-Entropy Quantization IIa

• Complete solution:

• At a given distortion level the optimal centroid density:

– increases with mean index rate

– decreases with differential entropy of data (= 
complexity of data)

• Can adjust coder in real time!

( )k( ) exp ( ) h(X )kg x H I= −
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Distortion-Rate Relation

• Relation distortion and rate (per dimension):

( )

( ) ( , , ) ( ) ( )

( , , ) ( ) ( )
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k k kk

I i X
i

r
k k kk

X

k

D p i D C r k G f x g x dx

C r k G g x f x dx

rC r k G H I h X
k

−

−

= ≈

=

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑ ∫

∫



wbk 06/02/21 39

The Vector-Quantization Advantage

• Divide distortions of SQ and VQ (Gray & Lookabough, 1989)

• Space-filling advantage

• Memory advantage (due to redundancy)   

( )( )
( )

1
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1 1( ) ( )kh X h X
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Constrained-Entropy Quantization is Easy

• Uniform quantizer:
– simple to implement
– Small advantage from using best lattice

• Somewhat more complicated

• Lossless coding is not easy:
– Does not even exist in old-school quantization
– Must know data density
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Some Notes on Lossless Coding

• Lossless coding tries to reduce rate to index entropy
• Huffman code:

– Table             based on probability distribution
– Works on per-variable basis; high overhead
– Simple to implement

• Arithmetic code:
– Computes codewords for sequence of coefficients

• Tricky to write program
• Low overhead

– Requires cumulative distribution function (cmf)
• Often nontrivial to obtain cmf

– Preferred method

ii w→
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Practical High-Rate CE Coding 

• No significant commercial implementations as yet
• Quantizer and arithmetic coder are computed; flexible

high-rate
encoder

network

i

estimate
pdf kx , 1, 2, 3,i i i iw − − − L

arithmetic
encoder

arithmetic
decoder

decoder
 i

{ : } k
i i ic c x V= ∈ ∈iC
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Example PDF Estimation

• Difficult; simplify problem:

– Density modeled as mixture
• Interpretation: data fall in one of set of probabilities

– Each mixture component is Gaussian (usually)

– Know how to design quantizer for Gaussian
• Symmetric
• Just one design procedure needed for cmf computation

– Encode which component you select then use 
corresponding quantizer 

,( ) ( ) ( ) k k
X M X m

m
p x p m p x=∑
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Gaussian mixture

• Four components:
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High-Rate Quantization

• Not yet widely applied
– Real-time adaptation not used

• Constrained entropy (constraint on average rate)
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What Have We Learned

• Problem:
– Have audio or video data (transformed or not)
– Need to encode efficiently

• Old-School Solution
– Good performance / not flexible
– Constrained resolution
– Codebook (often computationally expensive)
– Commonly used

• New-World Approach
– Good performance / can adapt in real-time
– Constrained entropy; requires lossless coder (arithmetic coder)
– Quantizer and arithmetic coder computed = flexible
– Not yet ready
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Quantization Conclusions

• Emphasis was on performance

• Emphasis is on flexibility (but no loss of performance)
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