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i Breast cancer statistics

Lifetime probability of developing breast
cancer is one In 8.8 (Canada)

Lifetime probability of death due to breast
cancer is one in 27 (Canada)

Prevalence: 1% of all women living with the
disease

Screening mammography has been shown to
reduce mortality rates by 30% to /0%



X-ray imaging of the breast
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i Mammography

Signs of Breast Cancer:
s Masses
= Calcifications

= Bilateral asymmetry

= Architectural distortion
(subtle, often missed)




Two standard views per breast:
Cranio-caudal and Mediolateral oblique




Masses

» Breast cancer causes
a desmoplastic reaction
In breast tissue

» A mass Is observed as
a bright, hyper-dense object

Mammogram with a mass



‘_L Calcification

» Deposits of calcium
In breast tissue

Mammogram with calcification



Bilateral Asymmetry

i » Differences in the overall appearance of
one breast with reference to the other




Architectural

i Distortion

Third most common mammographic
sign of nonpalpable breast cancer

The normal architecture of the breast
Is distorted

No definite mass visible

Spiculations radiating from a point

Mammogram with
Focal retraction or distortion at the architectural distortion

edge of the parenchyma 9



Objectives of computer-aided
i processing of mammograms

= Enhancement of image quality

= Detection of subtle signs of cancer

= Quantitative analysis of features

= Objective aids to diagnhostic decision

= Accurate and consistent analysis

m Earlier detection of breast cancer!
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i Some important problems

Detection of:

e Breast boundary (skin — air boundary)

e Pectoral muscle (in MLO views)

e Fibro-glandular disc

e Calcifications

e Masses and tumors

e Curvilinear structures

e Bilateral asymmetry (asymmetric densities)
e Architectural distortion
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i Computer-aided diagnosis (CAD)

s Increased number of cancers detected?
by 19.5%

= Increased early-stage malignancies detected?
from 73% to 78%

s Recall rate increased? from 6.5% to 7.7%

» 50% of the cases of architectural distortion
missed?

1 (Freer and Ulissey, 2001) 2 (Baker et al., 2003)
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* Simultaneous contrast
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* Simultaneous contrast
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i Just-noticeable difference
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enhancement

Original mammogram Enhanced image
with calcifications using adaptive-neighborhood
contrast enhancement
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Examples of benign and
‘L malignant calcifications
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Detection of calcifications by
* region growing
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Detection of calcifications by
‘ error of prediction

(a) Part of (b) Seeds (c) Calcifications
original detected using detected by region
mammogram prediction error growing
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Detection of masses by density
slicing and texture flow-field analysis
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Most benign masses have smooth shapes with convex lobules.
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Detection and analysis of tumors
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The green parts of the boundary represent concave segments, indicating malignancy.




Detection and analysis of tumors

Orientation field Coherence Tumor + FP det. 6'021‘2 ed



| Detection of a subtle tumor




Radiological characterization
of masses (BI-RADS)
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Analysis of masses
‘L feature extraction

Mass region

Ribbon for
computation
of texture
features

Shape
analysis:
Fractional
concavity

Normals to
contour for
computation of
edge sharpness
(acutance)
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Objective representation of

‘L brea

St masses

OO D

(a) b145Ic95
F..=0.00

A =0.07
Fg=8.11

benign
circumscribed

(b) b164ro94
F..=0.42

A =0.08

Fg =8.05

benign
macrolobulated

(c) m51rc97
F..=0.64
A =0.09
Fg=8.15

malignant
microlobulated

(d) m55l097
F..=0.83
A =0.01
Fg=8.29

malignant
spiculated
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Rank-ordering using shape: £,
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ank-ordering using acutance
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Classification of masses

Logistic regression Mabhalanobis Linear discriminant analysis KNN =7 Recall
(pooled)

Features Sens | Spec | Avg | Sens | Spec | Avg | Sens | Spec | Avg A, Sens | Spec | Avg Avg
F.. 90 (973 (947 | 90 | 973 | 94.7 | 100 | 973 |1 982 | 099 [ 90 | 97.3 | 94.7 | 90.4
A 50 94.6 78.9 75 67.6 70.0 | 75.0 [ 73.0 73.7 0.73 45 91.7 73.7 | 63.6
Fq 30 86.5 66.7 65 56.8 59.6 | 75.0 | 54.0 61.4 0.68 25 67.6 52.6 | 535
Fe A 90 97.3 | 94.7 90 973 | 947 | 100 | 97.3 | 98.2 | 0.98 90 100 | 96.5 | 84.6
F.o Fs 90 97.3 94.7 90 97.3 94.7 100 97.3 98.2 0.99 90 97.3 94.7 | 85.6
ARy 55 86.5 75.4 60 70.3 66.7 | 75.0 [ 73.0 73.7 0.76 55 89.2 73.7 | 61.6
F A F, | 90 | 973 | 947 95 | 973 | 96,5 | 100 | 973 [ 98.2 | 099 | 90 [ 97.3 | 94.7 | 83.4
14 texture * * * 70 50.0 649 | 65.0 | 64.9 64.9 0.67 | # # # #
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Content-based retrieval and

‘_-| analysis: benign mass

b145Ic95 b62x97 b164rx94 b148ro97



Content-based retrieval and
| analysis: malignant tumor




Detection of the pectoral muscle edge and the breast boundary
using Gabor filters and active contour models
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Analysis of bilateral asymmetry using Gabor filters

The directional
distribution of
fibroglandular
tissue differs
between the
left and right
breasts




i Architectural distortion
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Normal vs. architectural distortion
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Normal vs. architectural distortion




Detection of
i architectural distortion

1. Extract the orientation field

2. Filter and downsample the orientation field

3. Analyze orientation field using phase portraits
4. Post-process the phase portrait maps

5.  Detect sites of architectural distortion
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i Gabor filter

2 2
o) ——exp 1[ . yz] cos(ot)

2700, 2

Design parameters Gabor parameters

1 T

. . f=—;
e |line thickness t T Ox 2721n?2
e elongation |
e orientation 0 {x} {cos@ —sine}{x}

y “[sind  cos y'
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Design of Gabor filters

| > |, =1, =1,
’C:’CO T= T T= T T= T

0 =0, 0 =0, 0 =0, 0> 0,
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i Extracting the orientation field

= Compute the texture orientation (angle)
for each pixel
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i Extracting the orientation field

L (x,y)
g gl(x9 y)
1,(x,y) k_ . =argmax{|l (X, y)|}
I( ) " gz(xa y) : “ ‘
X,y g T T
oxy)=——+k_—
— : ( ’y) 2 + max K
Original
image e (x.¥)
g gK(Xa Y) Orientation
field
Gabor
filter bank
(K = 180)
Filtering Image resolution: 200 um/pixel
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Filtering and downsampling
the orientation field

o(x.y)

Orientation field

Filtering

A 4

sin[2t9(x, y)]

Downsampling

A 4

cos[26’(x, y)]

Image resolution: 200 um/pixel

Image resolution: 800 um/pixel

orientation field

> 0, (X, y)

.| Gaussian S(X’ y)
filtering !
— arctan{ S(X’ y)}
c(x,y)
N Gaussian t
filtering C(X y)
Downsample
> 9]: (Xa y) > \L 4
Filtered

Downsampled
orientation field



Orientation field:
architectural distortion
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Orientation field:
normal case
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i Phase portraits
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i Model error

Orientation field Model-generated field

o(x,y) #(x, y|A,b)

v

A(x. y)=sin[0(x, y)-4(x,y

A,b)] Local error measure

v

g2 (Ab)=>"> A(x,y) Sum of the squared
Xy error measure
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Texture analysis using
phase portraits (step 1 of 3)

1. Fit phase portrait model to the moving
analysis window
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Texture analysis using
‘L phase portraits (step 2 of 3)

2. FInd phase portrait type and location
of fixed point

Type: node

1.1 0.3
-0.2 1.7
- Fixed point:
. X=3, y=5
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IS using

phase portraits (step 3 of 3)

Texture analys

+

Cast a vote In the corresponding

phase portrait map
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i Post-processing and detection

1. Filter the node map with a Gaussian mask

2. Detect peaks In the node map larger than
the other peaks within a radius of
6.4 mm (8 pixels)

3. The peaks indicate the locations of
architectural distortion
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Phase portrait maps:
architectural distortion case

node saddle spiral
[0, 1.1] [0, 0.3x10-9] [0, O]



Phase portrait maps:
normal case

node saddle spiral
[0, 0.98] [0, 0.2x104] [0, O]



‘L Initial results of detection (2004)

= Test dataset: 19 mammograms
with architectural distortion

(MIAS database)
= Sensitivity: 84%

= 18 false positives per image
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Sensitivity (%)
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Reduction of false positives

//////




+

Rejection of confounding
structures

= Confounding structures include
= Edges of vessels
= Intersections of vessels
= Edge of the pectoral muscle
= Edge of the fibro-glandular disk
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Detection of curvilinear structures

i (CLS)

= Nonmaximal suppression

« If a pixel in the magnitude image is greater
than its neighbors along the direction
perpendicular to the local orientation field
angle, the pixel is a core CLS pixel

Gabor magnitude output
Core CLS pixel
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* Nonmaximal suppression

ROl with a vessel  Gabor magnitude  Outout of
output nonmaximal
suppression (NMS)

59



Rejection of confounding

i structures

= Main feature of confounding structures:

Angle from the orientation field and
direction perpendicular to the gradient
vector differ by less than 30 degrees

(Adaptation of a method by Karssemeijer
and te Brake: IEEE TMI 1996)
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Core CLS pixels detected CLS pixels refected from
(Output of NMS) further analysis
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Rejection of confounding CLS

Core CLS pixels detected CLS pixels rejected
(Output of NMS) from further analysis
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i Improved phase portrait analysis

= Local error measure weighted by smoothed and
downsampled map of CLS pixels

= Simulated annealing (SA) applied to obtain initial
estimate of phase portrait parameters at every
position of analysis window

= Global optimization of weighted sum of squared error
measure over 6-D space of Aand b6

= Parameters further refined by nonlinear least
squares
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Improved detection of sites of
architectural distortion

— "

Node map Node map
without CLS analysis with CLS analysis



Result of detection of
architectural distortion
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FROC analysis (2005)

FROC curve
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Effect of conditioning number of
matrix A on the orientation field

Example

Matrix A

Eigenvalues
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Improved results (2006)

e 19 cases of architectural distortion
e 41 normal control mammograms (MIAS)

e Symmetric matrix A: node and saddle only
e Conditioning number of A > 3 : reject result

e Sensitivity: 84% at 4.5 false positives / image

e Sensitivity: 95% at 9.9 false positives / image
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FROC analysis with symmetric A
(2006)
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i Conclusion and future work

Phase portraits can be used to detect
architectural distortion

Need to reduce false positives further
Evaluate method with a large database

Test method with screening mammograms
taken prior to mass formation:

earlier detection of breast cancer

70



Applications of
i computer-aided diagnosis

= Screening program or diagnostic clinic:
» Consultation by radiologists
s Decision support
« Second opinion
« Comparison with cases of known diagnosis
= Training:
« /eaching, continuing medical education
= Teleradiology, telemedicine:
» When local expertise is not available
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Use of the University of Calgary
iIndexed atlas with mobile agents

Local computer

Query

mammogram Results of

Viewed on retrieval
monitor #1 Vlewed on
monitor #2

Remote host computer

Indexed atlas

K-nearest cases
and notes for
comparative

Mammography database

analysis
by radiologist
4
v :
Extract features Secure Comparative
[0.09, 0.02, 0.04] communication analysis
link

\ 4

Network interface

Mobile software agent

Retrieval results

Network interface

A\ 4

<Mobi|e softw@

Query data
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