Poziv na predavanje "T-Wave...

Zavod za elektroničke sustave i obradbu informacija, Odjel za tehniku u medicini i biologiji (EMB18) i Odjel za obradu signala (SP01) Hrvatske sekcije IEEE pozivaju vas na predavanje organizirano u sklopu programa razmjene Erasmus KA131+ pod naslovom

T-Wave Alternans Detection with Machine and Deep Learning Techniques in Real Ambulatory Environments

kojeg će održati

MSc Lidia Pascual Sánchez i MSc Carmen Plaza Seco sa Sveučilišta u Alcali, Španjolska.

Predavanje će se održati na Fakultetu elektrotehnike i računarstva Sveučilišta u Zagrebu u

četvrtak 26. rujna 2024. godine u 10:00 sati u Sivoj Vijećnici.

Predavanje je na engleskom jeziku, a predviđeno trajanje s raspravom je 60 minuta. Predavanje je otvoreno za sve zainteresirane, a posebno pozivamo studente.

Sažetak predavanja i kratki životopisi predavačica su dostupni u opširnijoj obavijesti.

Sažetak predavanja

In this lecture, we will focus on the characterization and detection of T-Wave Alternans (TWA), a micro-volt fluctuation in electrocardiogram (ECG) signals that has been identified as a risk factor for serious cardiac conditions such as malignant arrhythmias and sudden cardiac death. We will explore a range of signal processing methods and artificial intelligence techniques, including machine learning and deep learning, aimed at detecting TWA in real-world ambulatory environments to help identify patients at risk of developing these life-threatening conditions. Additionally, we will provide insights into the explainability and interpretability of the models used, highlighting how these aspects contribute to building trust in AI-driven diagnostics and ensuring that the predictions are transparent and understandable for clinical practitioners.

 

Životopisi predavačica

Lidia Pascual Sánchez is a PhD student at the University of Alcalá, Madrid, Spain. She graduated in Biomedical Engineering in 2021 and completed her MSc in Machine Learning in Health from Carlos III University of Madrid in 2022. Her doctoral research centers on developing learning-based methods for detecting T-Wave Alternans in ambulatory electrocardiographic signals.

Carmen Plaza Seco is a PhD student at the University of Alcalá, Madrid, Spain. She graduated in Biomedical Engineering in 2020 and completed her MSc in Computational Intelligence and Interactive Systems at the Autonomous University of Madrid in 2021. Her current research focuses on the development of learning-based techniques for the characterization of long-term electrocardiographic signals. She is also collaborating with the University of Delaware in the United States as part of her PhD work.

Autor: Luka Jelić
Popis obavijesti